DATA MODUL

SPECIFICATION

AC133UT1(AA1020-NCA)

13.3" - 1600 x 1200 - TTL - Color (ACeP)

Version: 1.0

Date: 22.10.2020

Note: This specification is subject to change without prior notice

Version: 1.0

TECHNICAL SPECIFICATION

MODEL NO: AA1020-NCA (AC133UT1)

The content of this information is subject to be changed without notice. Please contact E lnk or its agent for further information.

Customer's Confirmation
Customer
Date
Ву

☐E Ink's Confirmation

Approve By \$ 2020, 10_2

Confirmed By 发表2020.1037

Prepared By \$ 2 20, 10,22

Revision History

Rev.	Issued Date	Revised Contents
1.0	2020/10/22	Release Version

TECHNICAL SPECIFICATION

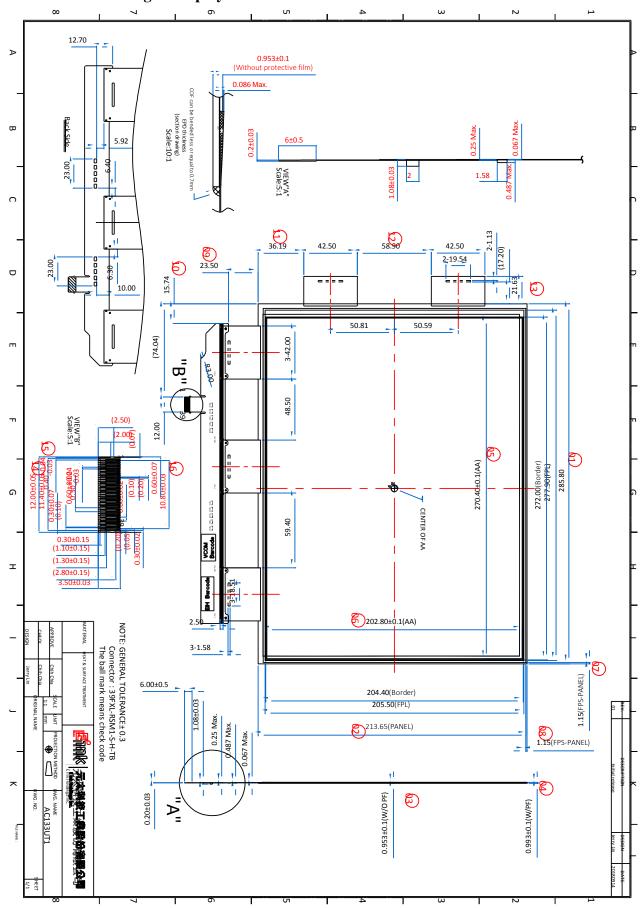
CONTENTS

NO.	ITEM	PAGE
-	Cover	1
-	Revision History	2
-	Contents	3
1	General Description	4
2	Features	4
3	Mechanical Specifications	4
4	Mechanical Drawing of Display Module	5
5	Input / Output Interface	6
6	Electrical Characteristics	8
7	Power Sequence	15
8	Optical Characteristics	17
9	Handling, Safety and Environment Requirements	20
10	Reliability test	22
11	Block Diagram	23
12	Packing	24
13	Bar Code definition	25

1. General Description

AC133UT1 is a reflective electrophoretic E Ink® Advanced Color ePaper (ACeP®) technology display module based on active matrix TFT substrate. The diagonal length of active area is 13.3" and contains 1600 x 1200 pixels. The display is capable to display full color images depending on the display controller and the associated lookup table used.

2. Features

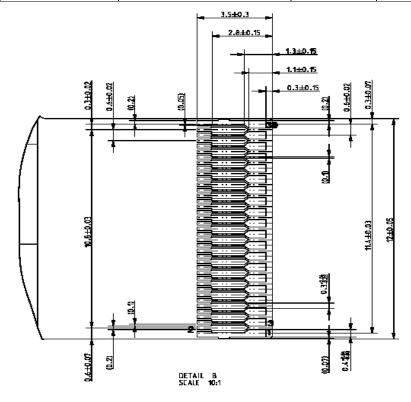

- Full color display
- ➤ High contrast
- ➤ High reflectance
- ➤ Ultra-wide viewing angle
- > Pure reflective mode
- ➤ Image stable
- ➤ Commercial temperature range (15 ~ 35 °C)
- ➤ Landscape/Portrait mode
- Antiglare hard-coated front-surface

3. Mechanical Specifications

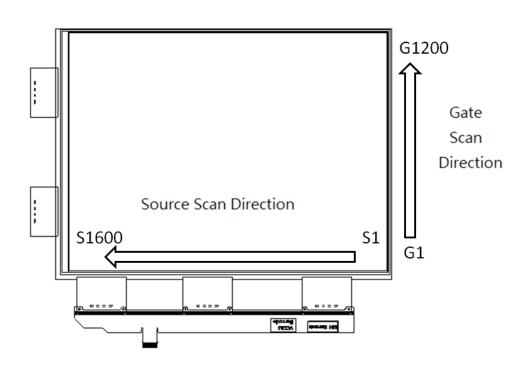
echanical Specifications						
Parameter	Specifications	Unit	Remark			
Screen Size	13.3	Inch				
Display Resolution	1600(H) × 1200(V)	Pixel	DPI: 150			
Active Area	270.4(H) × 202.8(V)	mm				
Pixel Pitch	0.169(H) × 0.169(V)	mm				
Pixel Configuration	Rectangle					
Outline Dimension	285.8(W) × 213.65(H) × 0.97(D)	mm	w/o masking film			
Module Weight	110 ± 10	g				
Display operating	Reflective mode					
mode						
Surface treatment	Anti-glare					

4. Mechanical Drawing of Display Module

5. Input / Output Interface


5-1) Pin Assignment

Pin	Signal	Description	Remark
1	VNEG	Negative power supply source driver	
2	VPOS	Positive power supply source driver	
3	VSS	Ground	
4	VDD	Digital power supply drivers	
5	XCL	Clock source driver	
6	XLE	Latch enable source driver	
7	XOE	Output enable source driver	
8	VSS	Ground	
9	VSS	Ground	
10	NC	No Connection	
11	XSTL	Start pulse source driver	
12	D0	Data signal source driver	
13	D1	Data signal source driver	
14	D2	Data signal source driver	
15	D3	Data signal source driver	
16	D4	Data signal source driver	
17	D5	Data signal source driver	
18	D6	Data signal source driver	
19	D7	Data signal source driver	
20	VSS	Ground	
21	VCOM_FPL	Common Voltage	
22	VCOM_TFT	Common Voltage	
23	VGH	Positive power supply gate driver	
24	VGL	Negative power supply gate driver	
25	NC	No Connection	
26	NC	No Connection	
27	XON	All the gate pins output mode	
28	MODE	Output mode selection gate driver	
29	VSS	Ground	
30	VSS	Ground	
31	VSS	Ground	
32	SPV	Start pulse gate driver	
33	CKV	Clock gate driver	
34	BORDER	Border connection	
35	VSS	Ground	
36	VSS	Ground	
37	VSS	Ground	
38	VSS	Ground	
39	VSS	Ground	



5-2) Panels Electrical Connection

SERVICE	CONNECTOR	TYPE NUMBER	NUMBER OF PINS	MATING CONNECTOR
Interface	JST	39FXL-RSM1-S-H-TB	39	Copper foil 0.3mm pitch

5-3) Panel Scan Directions

6. Display Module Electrical Characteristics

6-1) Absolute maximum rating

Parameter	Symbol	Rating	Unit
Logic Supply Voltage	VDD	-0.3 to +7	V
Positive Supply Voltage	V_{POS}	-0.3 to +18	V
Negative Supply Voltage	$V_{ m NEG}$	+0.3 to -18	V
Max .Drive Voltage Range	V_{POS} - V_{NEG}	36	V
Supply Voltage	VGH	-0.3 to +55	V
Supply Voltage	VGL	-32 to +0.3	V
Supply Range	VGH-VGL	-0.3 to +55	V
Operating Temp. Range	TOTR	+15 to +35	$^{\circ}\mathbb{C}$
Storage Temperature	TSTG	-25 to +50	$^{\circ}\mathbb{C}$

<u>Note</u>

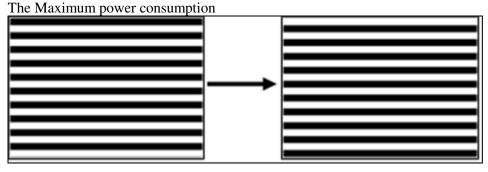
- Maximum ratings are those values beyond which damages to the device may occur.
- Functional operation should be restricted to the limits in the Electrical Characteristics chapter.
- The recommended operating temperature should be kept from 15℃ to 35℃

6-2) Panel DC characteristics

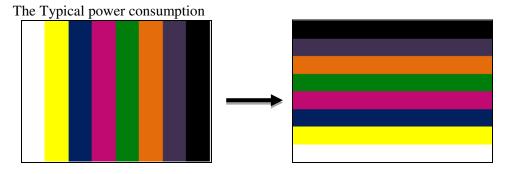
Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Signal ground	VSS			0		V
Lacia valtaga gumuly	VDD		2.7	3.3	3.6	V
Logic voltage supply	IDD	VDD=3.3V		8.5	12.5	mA
Coto nogotivo gunnly	VGL		-22	-20	-19	V
Gate negative supply	IGL	VGL=-20V		10	120	mA
Cata Pacitiva cumly	VGH		26	27	29	V
Gate Positive supply	IGH	VGH=27V		6	12	mA
Saumaa nagatiya gumuly	VNEG*		-16	Adjusted	-9	V
Source negative supply	INEG	VNEG=-15V		12	50	mA
Source Positive supply	VPOS*		6	Adjusted	17	V
Source Positive Supply	IPOS	VPOS=15V		15	75	mA
Border supply	(Vcom_FPL)*		(-19)	(Adjusted)	(16)	V
Asymmetry source	Vasm	VPOS+VNEG	-300		300	mV
	Vcom_TFT*		-19	Adjusted	16	V
Common voltage	Icom_TFT			15	120	mA
Common voltage	Vcom_FPL*		-19	Adjusted	16	V
	Icom_FPL			6	6	mA
Maximum Power panel	Pmax				1500	mW
Typical power panel	Ptyp			500		mW
Standby power panel	Pstby				30	mW

Note

- Voltage adjusted by WFM setting.
- Border should be available controlled by WFM setting or floating.



	IDD	VDD=3.3V	-100	100	mA
	IGL	VGL=-20V	-800	800	mA
	IGH	VGH=27V	-400	400	mA
Rush current	INEG	VNEG=-15V	-600		mA
	IPOS	VPOS=15V		1500	mA
	Icom		-1600	1600	mA


Note

- The Maximum power consumption is measured with following pattern transition: from LineA to LineB. (Note 6-1)
- The Typical power consumption is measured with following pattern transition: from horizontal 8 generic color pattern to vertical 8 generic color pattern (Note 6-2)
- VNEG & VPOS should be available controlled by WFM setting.
- Vcom-TFT & Vcom-FPL should be available controlled by WFM setting.
- The standby power is the consumed power when the panel controller is in standby mode.
- The listed electrical/optical characteristics are only guaranteed under the controller & waveform provided by E Ink.
- Vcom is recommended to be set in the range of assigned value \pm 0.1V.
- The rush current is for reference only.

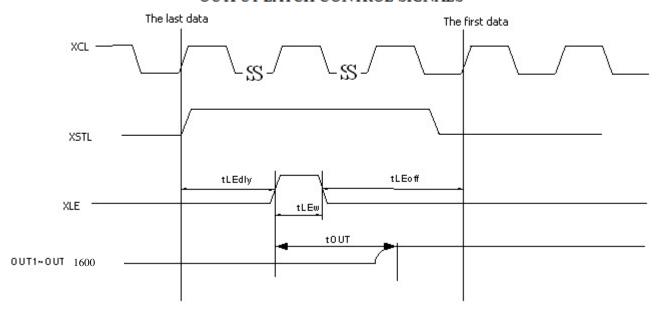
Note 6-1

Note 6-2

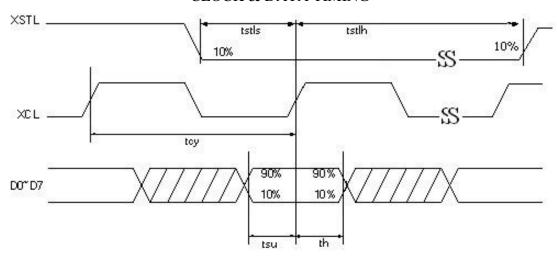
6-3) Refresh Rate

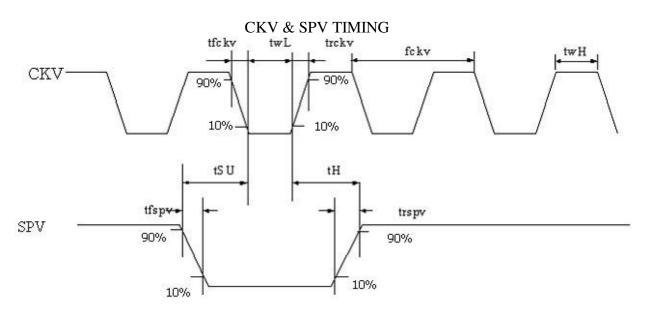
The module AC133UT1 is applied at a maximum screen refresh rate of 65Hz.

	Min	Max
Refresh Rate	-	65Hz

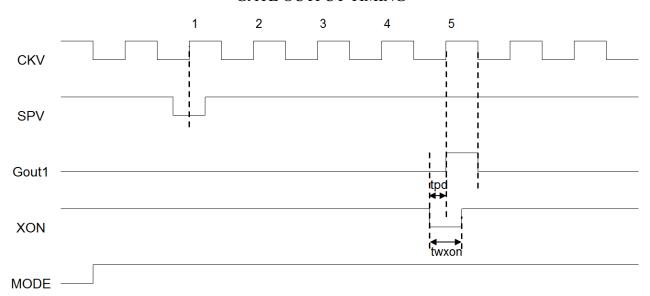

6-4) Panel AC characteristics

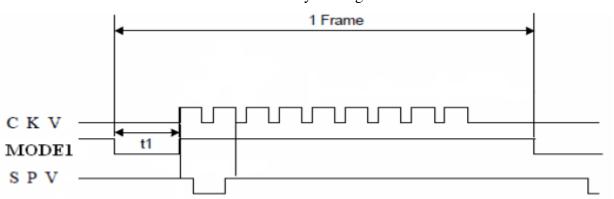
VDD=2.73V to 3.6V, unless otherwise specified.


Parameter	Symbol	Min.	Тур.	Max.	Unit
Clock frequency	fckv	-	-	200	kHz
Minimum "L" clock pulse width	twL	0.5	_	-	us
Minimum "H" clock pulse width	twH	0.5	_	-	us
Clock rise time	trckv	-	_	100	ns
Clock fall time	tfckv	-	_	100	ns
SPV setup time	tSU	100	-	twH-100	ns
SPV hold time	tH	100	_	twH-100	ns
Pulse rise time	trspv	-	-	100	ns
Pulse fall time	tfspv	-	-	100	ns
Clock XCL cycle time	tcy	16.7	_	-	ns
D0 D7 setup time	tsu	8	-	-	ns
D0 D7 hold time	th	8	-	-	ns
XSTL setup time	tstls	8.35	-	-	ns
XSTL hold time	tstlh	8.35	-	-	ns
XLE on delay time	tLEdly	40	-	-	ns
XLE high-level pulse width (When VDD=2.73V to 3.6V)	tLEw	40	-	-	ns
XLE off delay time	tLEoff	200	-	-	ns
Output setting time to +/- $30\text{mV}(\text{C}_{\text{load}}=200\text{pF})$	tout	-	-	12	us
XON pulse width	twxon	10			us
XON to output delay time	tpd			20	us
Frame Sync Length (Mode 1)	t1	1			1 line



OUTPUT LATCH CONTROL SIGNALS


CLOCK & DATA TIMING



GATE OUTPUT TIMING

Frame Sync Length

Note: First gate line on timing

After 5CKV, gate line is on.

6-5) Controllers Timing

The timing mode is depicted on Figure 1 and Figure 2 and it refers to timing of Source Driver Output Enable (SDOE) and Gate Driver Clock (GDCK). Note, the controller timing in the mode LGON follows GDCK timing.

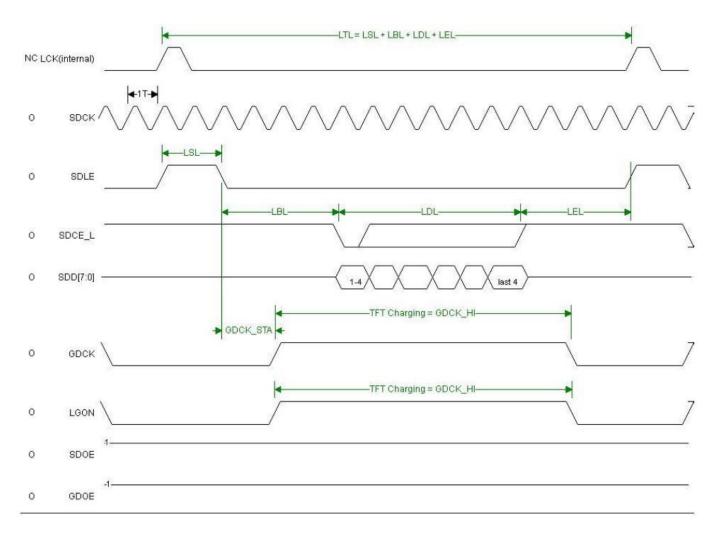


Figure 1 Line Timing in Mode 3

Note: LCK is an internal signal and it is shown for reference only.

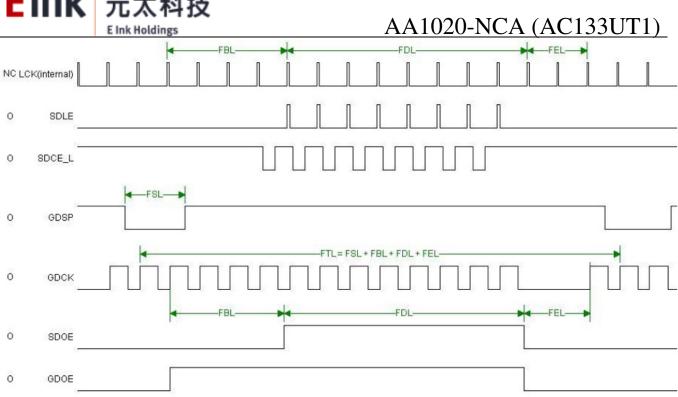


Figure 2 Frame Timing in Mode 3

Timing Parameters Table

Mode	3	Resolution					
SDCK [MHz]	34.29	1600x1200					
Pixels Per SDCK	4						
Line	LSL	LBL	LDL	LEL	GDCK_STA	LGONL	
Parameters[SDCK]	6	8	400	20	10	380	
Line	-	-	-	-	-	-	
Parameters[us]	0.18	0.23	11.67	0.58	0.29	11.08	
Frame	FSL	FBL	FDL	FEL	-	FR [Hz]	
Parameters [lines]	1	4	1200	10	-	65.02	
Frame	-	-	-	-	-	-	
Parameters [us]	12.66	50.63	15190	126.58	-	-	

Note 1: For Freescale SoC GDOE Low pulse represent FSL and GDSP pulses with the first period of FBL

Note 2:

SDCLK = XCL

 $SDD[7:0] = D0 \sim D7$

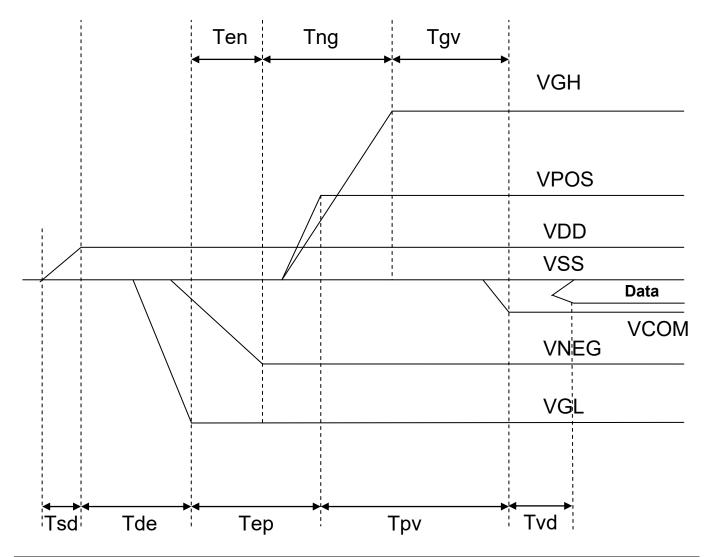
 $SDCE_L = XSTL$

GDCK = CKV

GDSP = SPV

GDOE = Mode1

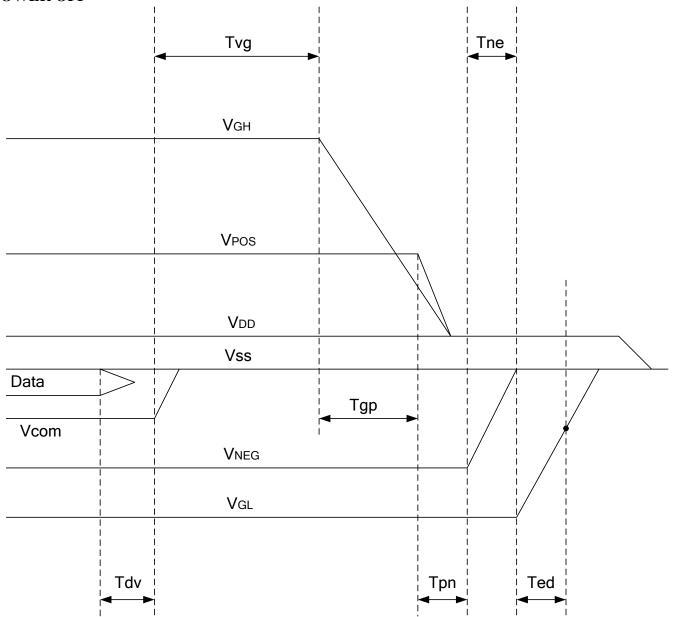
SDOE = XOE


7. Power Sequence

Power Rails must be sequenced in the following order:

1. VSS → VDD → VNEG → VPOS (Source driver) → VCOM

2. VSS → VDD → VGL → VGH (Gate driver)


POWER ON

	Min	Max
Tsd	30us	-
Tde	100us	-
Тер	1000us	-
Tpv	100us	-
Tvd	100us	-
Ten	Ous	-
Tng	1000us	-
Tgv	100us	-

POWER OFF

	Min	Max	Remark	
Tdv	100μs	-	-	
Tvg	0μs	-	-	
Tgp	0μs	-	-	
Tpn	0μs	-	-	
Tne	0μs	-	-	
Ted	0.5s	-	Discharged point @ -7.4 Volt	

8. Optical characteristics

8-1) Specification

Measurements are made with that the illumination is under an angle of 45 degrees, the detector is perpendicular unless otherwise specified.

 $T = 25^{\circ}C$

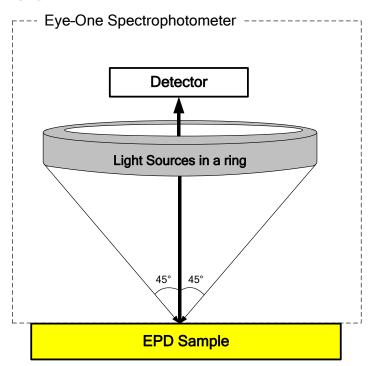
SYMBOL	PARAMETER	CONDITIONS	MIN	TYP.	МАХ	UNIT	Note
R	Reflectance	White		35	-	%	Note 8-1
CR	Contrast Ratio	-	8	10	-		-
Gamut	Color Saturation	-	50K	60K		dE^3	
Rendered Color	Color Performance	Cyan (0,131,163)		(51.3, -6.3, -4.7)			
		Magenta (196,0,137)		(45.1, 32.2, -6.4)			
		Yellow (216,203,0)		(65.1, -9.1, 43)			
		Red (190,26,0)		(45.2, 24.5, 21.5)		L*,a*,b*	Note 8-2
		Green (0,137,39)		(54.9, -16.4, 15.5)		L',d',D'	8-3
		Blue (59,0,137)		(33.9, 15.5, -23)			
		Black (0,0,0)		(22.7, 6.3, 1.3)			
		White (255,255,255)		(70.5, -1.3, 3.5)			
	Color Variation	dE ₂₀₀₀			10	dE	
T _{update_RS}	Update time	Clean mode → image		36		sec	Note 8-4

Note 8-1: Luminance meter: Eye - One Pro Spectrophotometer

Note 8-2: The rendered color inputs are chosen to illustrate the color capability of the reflective ACeP display

Note 8-3: 8 rendered color performance values at 25.5 °C ambient; Color meter – PR655

Spectroradiometer


Note 8-4 : Pattern switch : Clean mode (White) → Picture; not include dwell time

8-2) Definition of contrast ratio

The contrast ratio (CR) is the ratio between the reflectance in a full white area (Rl) and the reflectance in a dark area (Rd):

CR = RI/Rd

8-3) Reflection Ratio


The reflection ratio is expressed as:

 $R = Reflectance \ Factor_{white \ board} \quad x \quad (\ L_{center} \ / \ L_{white \ board})$

 L_{center} is the luminance measured at center in a white area (R=G=B=1). $L_{white \, board}$ is the luminance of a standard white board. Both are measured with equivalent illumination source. The viewing angle shall be no more than 2 degrees.

8-4) Definition of Color Performance

The Spectroradiometer PR655 with MS-75 lens was used to measure color image to obtain L*, a*, b*. Collect L*, a*, b* and then determine the color space.

The color difference is expressed as dE*distance. ACeP module uses dE2000 for calculation.

9.HANDLING, SAFETY AND ENVIROMENTAL REQUIREMENTS

WARNING

The display may break when it is dropped or bumped on a hard surface. Handle with care. Should the display break, do not touch the electrophoretic material. In case of contact with electrophoretic material, wash with water and soap.

CAUTION

The display module should not be exposed to harmful gases, such as acid and alkali gases, which corrode electronic components.

Disassembling the display module can cause permanent damage and invalidate the warranty agreements.

IPA solvent can only be applied on active area and the back of a glass. For the rest part, it is not allowed

Mounting Precautions

- (1) It's recommended that you consider the mounting structure so that uneven force (ex. Twisted stress) is not applied to the module.
- (2) It's recommended that you attach a transparent protective plate to the surface in order to protect the EPD. Transparent protective plate should have sufficient strength in order to resist external force.
- (3) You should adopt radiation structure to satisfy the temperature specification.
- 4) Acetic acid type and chlorine type materials for the cover case are not desirable because he former generates corrosive gas of attacking the PS at high temperature and the latter cause's circuit break by electro-chemical reaction.
- (5) Do not touch, push or rub the exposed PS with glass, tweezers or anything harder than HB pencil lead. And please do not rub with dust clothes with chemical treatment. Do not touch the surface of PS for bare hand or greasy cloth. (Some cosmetics deteriorate the PS)
- (6) When the surface becomes dusty, please wipe gently with absorbent cotton or other soft materials like chamois soaks with petroleum benzene. Normal-hexane is recommended for cleaning the adhesives used to attach the PS. Do not use acetone, toluene and alcohol because they cause chemical damage to the PS.
- (7) Wipe off saliva or water drops as soon as possible. Their long time contact with PS causes deformations and color fading.

Data sheet status

Product specification

This data sheet contains Preliminary product specifications.

Limiting values

Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other condition These are stress ratings only and operation of the device at these or at any other condition to limiting values for extended periods may affect device reliability.

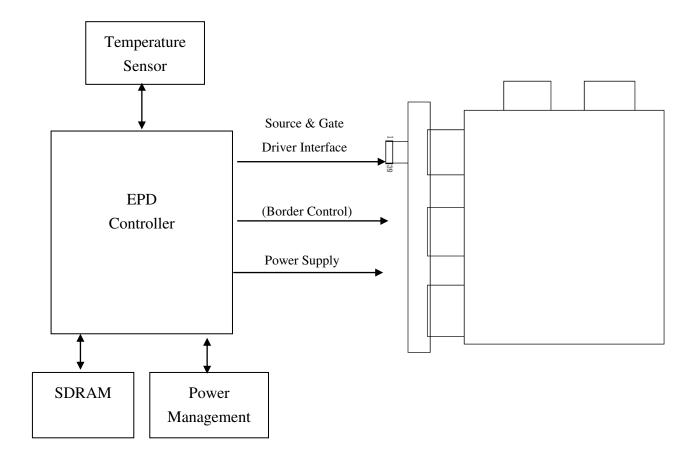
Application information

Where application information is given, it is advisory and does not form part of the specification

10. Reliability test

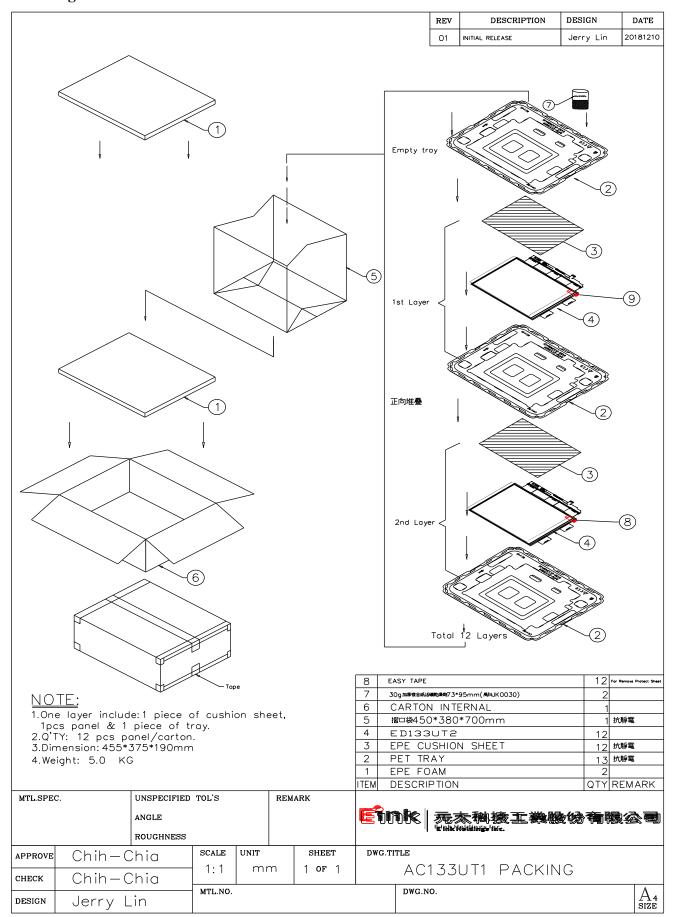
	TEST	CONDITION	METHOD	REMARK
1	High-Temperature Operation	T = +35°C, RH = 50% for 240 hrs	IEC 60 068-2-2Bp	
2	Low-Temperature Operation	T = 15°C, RH = 35% for 240 hrs	IEC 60 068-2-2Ab	
3	Low-Temperature Storage	T = -25°C for 240 hrs Test in white pattern	IEC 60 068-2-1Ab	
4	High-Temperature Storage	T = +50°C, RH = 30% for 240 hrs	IEC 60 068-2-2Bp	
5	High-Temperature, High-Humidity Storage	T = +50°C, RH = 80% for 240 hrs	IEC 60 068-2-3CA	
6	Temperature Cycle	-25°C→+60°C,, 50 Cycles 30min 30min Test in white pattern	IEC 60 068-2-14	
7	Package Vibration	1.04G, Frequency: 10~500Hz Direction: X,Y,Z Duration: 1 hours in each direction	Full packed for shipment	
8	Package Drop Impact	Drop from height of 122 cm on concrete surface. Drop sequence: 1 corner,3 edges,6 faces One drop for each.	Full packed for shipment	
9	Electrostatic Effect (non-operating)	(Machine model)+/- 250V 0Ω, 200pF	IEC 62179, IEC 62180	

Actual EMC level to be measured on customer application


Note: The protective film must be removed before temperature test.

< Criteria >

In the standard conditions, there is not display function NG issue occurred. (including: line defect, no image). All the cosmetic specification is judged before the reliability stress.



11. Block Diagram

12. Packing

13. Bar Code definition

Type1 Early FPL platform's barcode

 C01
 R4
 A
 09
 1
 U
 A
 V
 0007N
 AT

 1
 2
 3
 4
 2
 5
 6
 2
 7
 2

1 : EPD model code

2 : Internal control codes

3 : FPL lot codes

4 : FPL lot codes

5 : Year:

U: 2019 / V: 2020 / W: 2021 /... / Z: 2024

6 : Month:

1:Jan. 2:Feb. ... 9:Sep. A:Oct. B:Nov. C:Dec.

7 : Serial codes

Type2 New FPL platform's barcode

 C01
 R4
 AAA
 017
 1
 V
 9
 T
 0000G
 AT

 1
 2
 3
 4
 2
 5
 6
 2
 7
 2

1 : EPD model code

2 : Internal control codes

3: FPL lot codes

4 : FPL lot codes

5 : Year:

U: 2019 / V: 2020 / W: 2021 /... / Z: 2024

6 : Month:

1:Jan. 2:Feb. ... 9:Sep. A:Oct. B:Nov. C:Dec.

7 : Serial codes

DATA MODUL

ALL TECHNOLOGIES. ALL COMPETENCIES. ONE SPECIALIST.

DATA MODUL AG

Landsberger Straße 322 DE-80687 Munich Phone: +49 89 56017 0

DATA MODUL WEIKERSHEIM GMBH

Lindenstraße 8 DE-97990 Weikersheim Phone: +49 7934 101 0

