

SPECIFICATION

AC057TC1 5.65", 600x448, SPI

Version: 1.0

Date: 19.01.2021

Note: This specification is subject to change without prior notice

www.data-modul.com

Ever Jan

Version: 1.0

Technical Specification

MODEL NO: AB1024-EGA (AC057TC1)

The content of this information is subject to be changed without notice.

Please contact E Ink or its agent for further information.

Customer's Confirmation			
Customer	-		
Date	_		
Ву	-		
	[E Ink's Confir	mation
	,	Approved By	Sean Chem
	_		0 =
	(Confirmed By	林市步 1/1/21

The information contained herein is the exclusive property of E Ink Holdings Inc., and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of E Ink Holdings Inc.

Prepared By

Revision History

Rev.	Issued Date	Revised Contents
0.1	2019.10.16	Tentative
0.1	2019.10.30	Preliminary
0.2	2019.11.19	Update Page 17: Remove R65H (DAM) SPI Flash control
1.0	2021.01.19	Final

TECHNICAL SPECIFICATION

CONTENTS

1.	Application	1
1.	11pp110uit011	1
2.	Features	1
3.	Mechanical Specifications	1
4.	Mechanical Drawing of EPD Module	2
5.	Input/Output Interface	3
6.	Command Table	5
7.	Electrical Characteristics	6
8.	Optical Characteristics	.13
9.	Handling, Safety and Environmental Requirements and Remark	.13
10.	Reliability Test	.16
11.	Block Diagram	.17
	Packing	

1. Application

AB1024-EGA is a reflective electrophoretic E Ink® technology display module on an active matrix TFT substrate. The diagonal length of the active area is 5.65" and contains 600 x 448 pixels. The panel is capable of displaying 7-colors of black, white, red, yellow, blue, green, and orange images depending on the associated lookup table used. The circuitry on the panel includes an integrated gate and source driver, timing controller, oscillator, DC-DC boost circuit, and memory to store the frame buffer and lookup tables, and additional circuitry to control VCOM and BORDER settings.

2. Features

- ➤ E Ink Gallery PaletteTM display
- ➤ High contrast TFT electrophoretic
- ➤ 600 x 448 display
- ➤ High reflectance
- Ultra wide viewing angle
- Ultra low power consumption
- > Pure reflective mode
- ➤ Bi-stable
- ➤ Low current sleep mode
- On chip display RAM
- Serial Peripheral Interface
- External SPI flash/eeprom for waveform
- > On-chip oscillator
- > On-chip booster and regulator control for generating Vcom, Gate and Source driving voltage
- > I2C Signal Master Interface to read external temperature sensor
- \triangleright Operational temperature range (15 ~ 35°C)

3. Mechanical Specifications

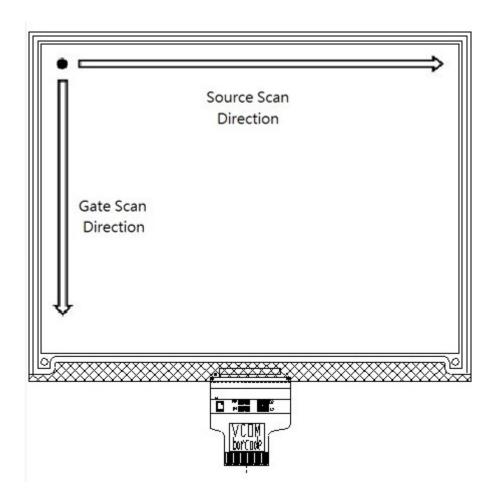
Parameter	Specifications	Unit	Remark
Screen Size	5.65	Inch	
Display Resolution	600 (H) × 448 (V)	Pixel	132dpi
Active Area	114.9 (H) × 85.8 (V)	mm	
Pixel Pitch	191.5 (H) × 191.5 (V)	um	
Outline Dimension	$125.4 \text{ (H)} \times 99.5 \text{ (V)} \times 0.91 \text{ (D)}$	mm	Without protective film
Module Weight	22 ± 2.2	g	

4. **Mechanical Drawing of EPD Module** B D 0 I V 0 ш 12 12 5.25 ±0.20 24.01 ±0.50 99.50 ±0.20(TFT) 96.70(FPS) General tolerance is +/-0.2mm Dimension in () is for reference U1 flash IC: L=3±0.1mm W=2±0.1mm T=0.55±0.05mm Unwelded component: C4 & C5 Component height max.: 0.9mm (93.80(FPL)) 85.79 ±0.10(AA) 4.60 ±0.20 10 0 25.40 ±0.20 (TFT 14.90 ±0.10(AA 119.10(FPL) 9 9 Label ∞ 00 .35 ±0.03 .50 ±0.07 12.50 ± 0.10 1.20 max. (UV glue) 0.30 ±0.03 0.98 ±0.10(EPD+PF 0.91 ±0.10(EPD) 1.08 max. 0 0 5 5 3.67 ±0.30 4 5 w TINK 元本建数工業数份有限公司 non-scale AC057TC N 0.065 max.(thickness of EC over PS) 3 0 D U I 0

The information contained herein is the exclusive property of E Ink Holdings Inc., and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of E Ink Holdings Inc.

5. Input/Output Interface

5-1) Recommended Connector Type of Panel


AYF532435

5-2) Pin Assignment of Panel

Pin#	Type	Single	Description	Remark
1	I	MFCSB	MCU to flash/EEprom chip select	
2	О	GDR	N-Channel MOSFET Gate Drive Control	
3	О	RESE	Current Sense Input for the Control Loop	
4	P	VSL_LV	Negative source driver voltage (low voltage)	
5	P	VSH_LV	Positive source driver voltage (low voltage)	
6	О	TSCL	I2C Interface to digital temperature sensor Clock pin	
7	I/O	TSDA	I2C Interface to digital temperature sensor Data pin	
8	I	BS1	Bus selection pin; L: 4-wire IF. H: 3-wire IF. (Default)	
9	О	BUSY_N	Busy state output pin	
10	I	RST_N	Reset	
11	I	D/C	Data /Command control pin	
12	I	CSB	Chip Select input pin	
13	О	SCL	Serial clock pin (SPI)	
14	I/O	SDA	Serial data pin (SPI)	
15	P	VDDIO	Power for interface logic pins	
16	P	VDD	Power Supply pin for the chip	
17	P	VSS	Ground	
18	P	VDD_1.8	Core logic power pin	
19	0	FMSDO	Elech/EEnrom to MCU data output	Cannot share pin with
19	U	FMSDO	Flash/EEprom to MCU data output	SDA of SPI.
20	P	VSH	Positive Source driving voltage	
21	P	VGH	Power Supply pin for VGH, VSH and VSH_LV	
22	P	VSL	Negative Source driving voltage	
23	P	VGL	Power Supply pin for VCOM, VGL, VSL and VSL_LV	
24	P	VCOM	VCOM driving voltage	

5-2) Panel Scan Directions

6. Command Table

6-1) Register Definition

6-1-1) R02H (POF): Power OFF Command

Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0
Turning OFF the power	0	0	0	0	0	0	0	0	1	0

6-1-2) R04H (PON): Power ON Command

Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0
Turning ON the power	0	0	0	0	0	0	0	1	0	0

6-1-3) R06h (BTST): Booster Soft Start

Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0
Starting data transmission	0	0	0	0	0	0	0	1	1	0
	0	1	1	1	0	0	0	1	1	1
	0	1	1	1	0	0	0	1	1	1
	0	1	0	0	0	1	1	1	0	1

6-1-4) R07H (DSLP): Deep sleep

Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0
Deep sleep	0	0	0	0	0	1	0	0	0	0
	0	1	1	0	1	0	0	1	0	1

NOTE: "-" Don't care, can be set to VDD or VSS level

This command makes the chip enter the deep-sleep mode. The deep sleep mode could return to stand-by mode by hardware reset assertion.

The only one parameter is a check code, the command would be executed if check code is A5h.

7. Electrical Characteristics

7-1) Absolute Maximum Ratings:

Item	Symbol	Min	Max	Unit
Logic Supply Voltage	VDD	-0.3	+4.0	V
Operating Temperature	Topr	15	35	$^{\circ}\! \mathbb{C}$
Storage Temperature	Tstg	-25	60	$^{\circ}\! \mathbb{C}$

Note: Maximum ratings are those values beyond which damages to the device may occur.

Functional operation should be restricted to the limits in the Electrical Characteristics chapter.

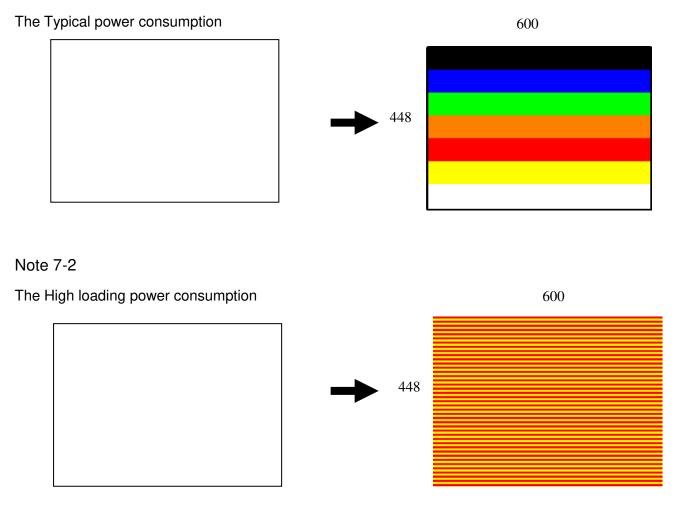
Suggested operation temperature range between 17~31°C for better optical performance.

7-2) Panel DC Characteristics

The following specifications apply for: VDD = 3.3V, VDD 1.8 = 1.8V, TA = 25°C

DIGITAL DC C	HARACTERISTICS					
Symbol	Parameter	Conditions	MIN.	TYP.	MAX.	Unit
VDD	Logic supply voltage		2.3	3.3	3.6	V
VGH	Positive Gate driving voltage			20.0		V
VGL	Negative Gate driving voltage			-20.0		V
VSH	Positive source driving voltage			15.0		V
VSL	Negative source driving voltage			-15.0		V
VCOM_DC	VCOM_DC output voltage		-2.0	Adjusted	-0.5	V
VCOM_AC	VCOM_AC output voltage		VSL+ VCOM_DC		VSH+ VCOM_DC	v
VIL	Low level input voltage	Digital input pins	0		0.2xVDD	V
VIH	High level input voltage	Digital input pins	0.8xVDD		VDD	V
Voh	High level output voltage	Digital input pins, IOH= 400 uA	0.8xVDD			v
Vol	Low level output voltage	Digital input pins, IOL=-400 uA	0		0.2xVDD	V
Імѕтв	Module stand-by current	Stand-by mode		0.2		mA
I _{MDS}	Module deep sleep & Flash power down current	Deep sleep mode & Flash power down mode		3.0		uA
Inc	Inrush Current			0.12	0.15	A
IMOPR	Module operating current			10.0	68.0	mA
P	Operation Power Dissipation	VDD=3.3V with DC-DC		33.0	225.0	mW
PSTBY	Standby Power Dissipation	VDD=3.3V		0.66		mW

The information contained herein is the exclusive property of E Ink Holdings Inc., and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of E Ink Holdings Inc.

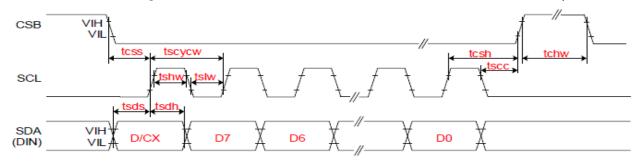


Note: The Module operating current data is measured by using Oscilloscope, and extract the Mean value.

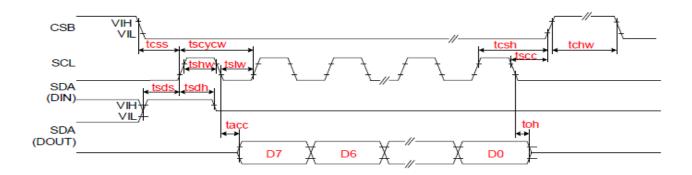
- The Typical power consumption is measured using associated 25C waveform with following pattern transition: from full white pattern to black, white, red, yellow, blue, green and orange stripe pattern.

 (Note 7-1)
- The Max power consumption is measured using associated 25C waveform with following pattern transition: from full white pattern to pattern of repeated 1 consecutive red scan lines followed by 1 consecutive yellow scan line. (Note 7-2)
- The standby power is the consumed power when panel controller is in standby mode.
- The listed electrical/optical characteristics are only guaranteed under the controller & waveform provided by E INK.

Note 7-1



7-3) Panel AC Characteristics


VDD=2.5V to 3.6V, unless otherwise specified.

SYMBOL	SIGNAL			MIN.	TYP.	MAX.	UNIT
		SERIAL COMM	UNICATION	•	•		
tCSS		Chip select setup time		60			ns
tCSH	CSB	Chip select hold time		65			ns
tSCC	СЗБ	Chip select setup time		20			ns
tCHW		Chip select setup time		40			ns
tSCYCW		Serial clock cycle (Write)		100			ns
tSHW		SCL "H" pulse width (Write)		35			ns
tSLW	SCL	SCL "L" pulse width (Write)		35			ns
tSCYCR	SCL	Serial clock cycle (Read)		150			ns
tSHR		SCL "H" pulse width (Read)		60			ns
tSLR		SCL "L" pulse width (Read)		60			ns
tSDS		Data setup time		30			ns
tSDH	SDA (DIN)	Data hold time		30			ns
tACC	(DOUT)	Access time				10	ns
tOH		Output disable time		15			ns
		Drive	ER				
trS		Source driver rise time	99% final value		5		us
tFS		Source driver fall time			5		us
trG		Gate driver rise time	99% final value		5		us
tFG		Gate driver fall time			5		us
trCOM		VCOM rise time	99% final value		1		ms
tFCOM		VCOM fall time			1		ms

3-wire Serial Interface - Write

7-3-1) MCU Serial Interface

3-WIRE SPI

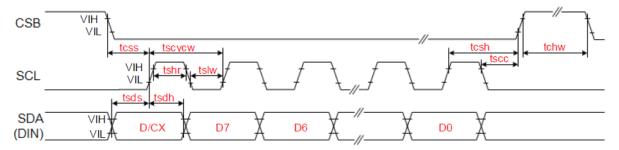


Figure: 3-wire Serial Interface - Write

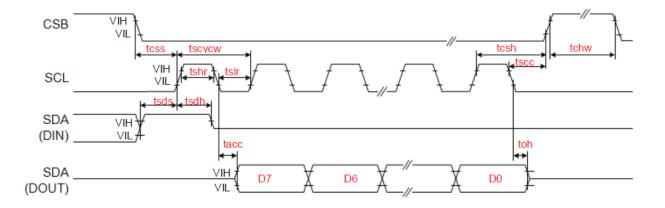
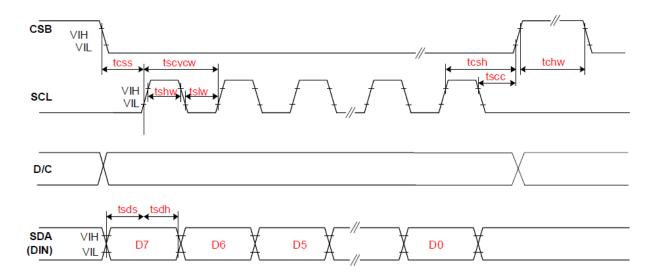
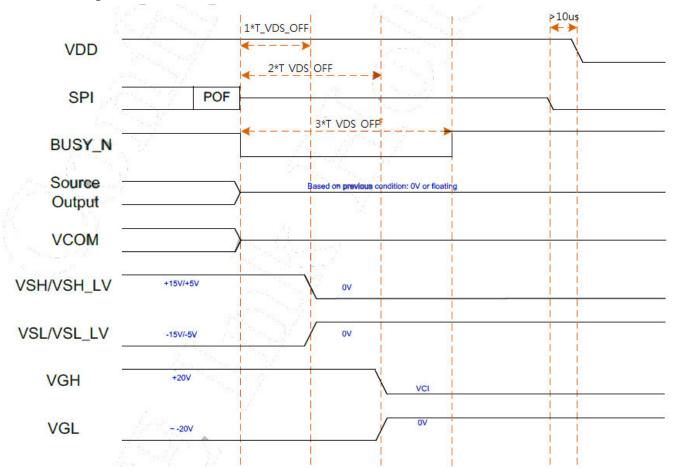


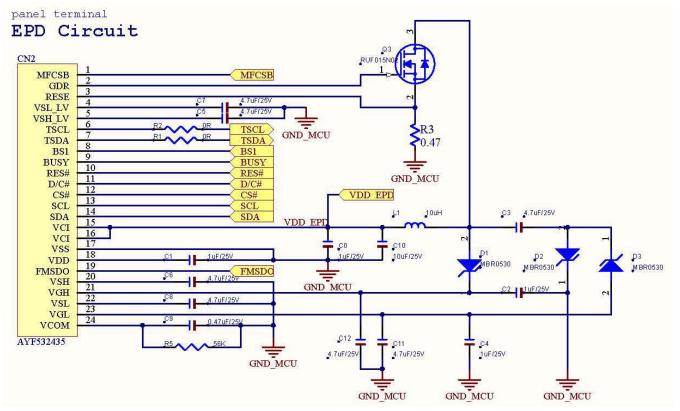
Figure: 3-wire Serial Interface - Read

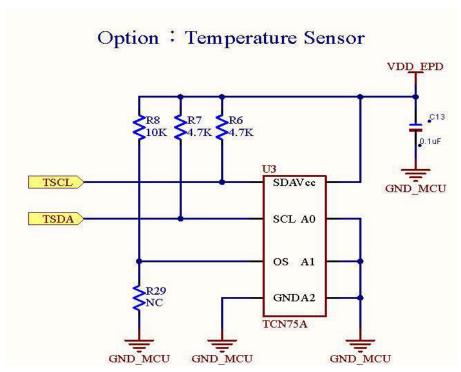
4-WIRE SPI




Figure: 4-wire Serial Interface - Read

7-3-2) Power On/Off Characteristics


Power ON Sequence


Power OFF Sequence

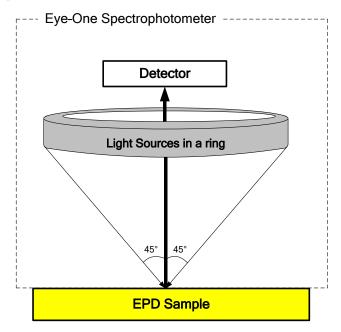
7-4) Reference Circuit

Note: The pin of FMSDO can't connect with the I/O pin of other ICs(Ex. Flash) for preventing to affect the signal of other ICs.

8. Optical Characteristics

8-1)Specifications

Measurements are made with that the illumination is under an angle of 45 degrees, the detector is perpendicular unless otherwise specified.


 $T = 24^{\circ}C$

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	Unit
R	Reflectance	White		41		%
CR	Contrast Ratio		9	12		
T _{update}	Update time			30		sec
SYMBOL	Color coordinates		L*_TYP	a*_TYP	b*_TYP	dE2000_Max
DS	Dark state		21.7	5.2	-10.1	7
WS	White state		70.3	-0.3	0.6	4
BS	Blue state		29.1	6.9	-20.6	5
GS	Green state		39.6	-25.4	11.2	7
RS	Red state		37.3	32.4	11.8	5
YS	Yellow state		64.1	-4.5	48.5	4
OS	Orang	e state	46.1	24.3	23.3	5

^{*}Color performance measured with Konica Minolta CM-25cG

8-2) Definition of contrast ratio

The contrast ratio (CR) is the ratio between the reflectance in a full white area (Rl) and the reflectance in x CR = Rl/Rd

8-3) Reflection Ratio

The reflection ratio is expressed as:

 $R = Reflectance Factor_{white board} \quad x \quad (L_{center} / L_{white board})$

 L_{center} is the luminance measured at center in a white area (R=G=B=1). $L_{white\ board}$ is the luminance of a standard white board. Both are measured with equivalent illumination source. The viewing angle shall be no more than 2 degrees.

9. Handling, Safety and Environmental Requirements and Remark

^{*}Image Transition: White → Black → White → Picture

WARNING

The display glass may break when it is dropped or bumped on a hard surface. Handle with care. Should the display break, do not touch the electrophoretic material. In case of contact with electrophoretic material, wash with water and soap.

CAUTION

The display module should not be exposed to harmful gases, such as acid and alkali gases, which corrode electronic components.

Disassembling the display module can cause permanent damage and invalidate the warranty agreements.

IPA solvent can only be applied on active area and the back of a glass. For the rest part, it is not allowed.

Mounting Precautions

- (1) It's recommended that you consider the mounting structure so that uneven force (ex. Twisted stress) is not applied to the module.
- (2) It's recommended that you attach a transparent protective plate to the surface in order to protect the EPD. Transparent protective plate should have sufficient strength in order to resist external force.
- (3) You should adopt radiation structure to satisfy the temperature specification.
- (4) Acetic acid type and chlorine type materials for the cover case are not desirable because the former generates corrosive gas of attacking the PS at high temperature and the latter causes circuit break by electro-chemical reaction.
- (5) Do not touch, push or rub the exposed PS with glass, tweezers or anything harder than HB pencil lead. And please do not rub with dust clothes with chemical treatment. Do not touch the surface of PS for bare hand or greasy cloth. (Some cosmetics deteriorate the PS)
- (6) When the surface becomes dusty, please wipe gently with absorbent cotton or other soft materials like chamois soaks with petroleum benzene. Normal-hexane is recommended for cleaning the adhesives used to attach the PS. Do not use acetone, toluene and alcohol because they cause chemical damage to the PS.
- (7) Wipe off saliva or water drops as soon as possible. Their long time contact with PS causes deformations and color fading.

Data sheet status					
Product specification	This data sheet contains final product specifications.				
Limiting values					

Limiting values

Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information

Where application information is given, it is advisory and does not form part of the specification.

Long Term Storage

When storing modules as spares for a long time, the following precautions are necessary.

(1) Store them in dark place. Do not expose the module to sunlight or fluorescent light. Keep the temperature between 5° C and 35° C at normal humidity.

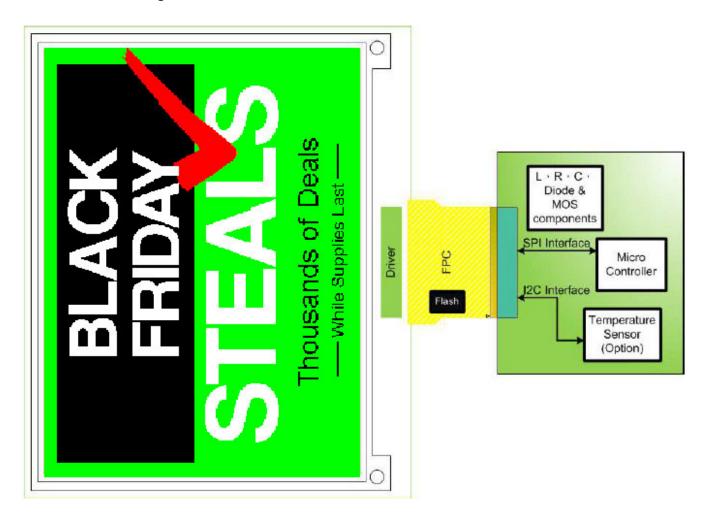
REMARK

All The specifications listed in this document are guaranteed for module only. Post-assembled operation or component(s) may impact module performance or cause unexpected effect or damage and therefore listed specifications is not warranted after any Post-assembled operation.

10. Reliability Test

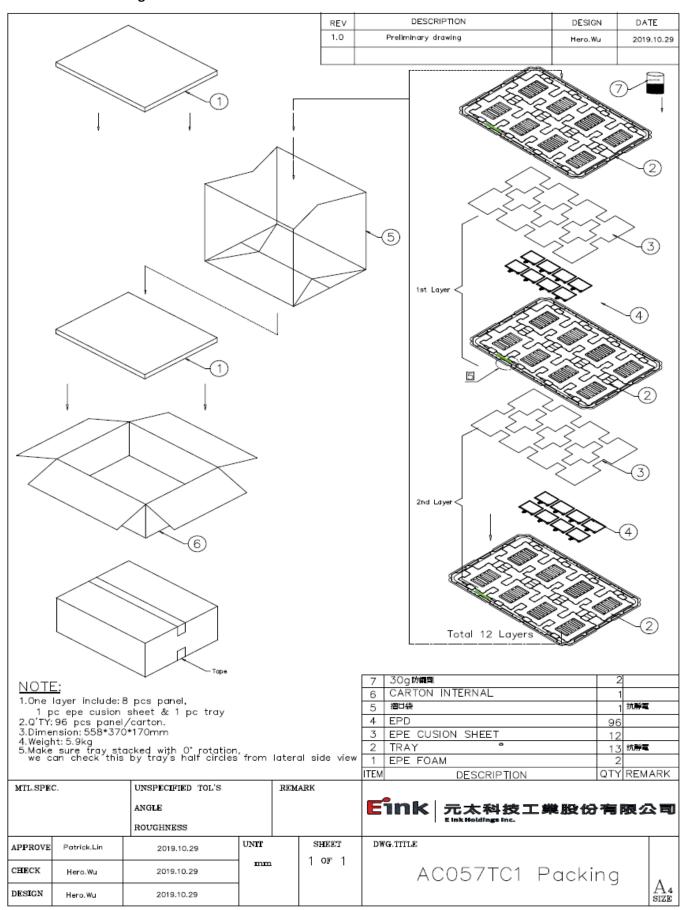
	TEST	CONDITION	REMARK
1	High Temperature Storage	Ta= 60°C 40% RH, 240hrs	(Test in White Pattern)
2	Low Temperature Storage	Ta= -25°C, 240hrs	(Test in White Pattern)
3	High Temperature Operation	Ta= 35°C 35% RH, 240hrs	
4	Low Temperature Operation	Ta= 15°C 35% RH, , 240hrs	
5	High Temperature, High Humidity Operation test	Ta= 35°C 80% RH, 240hrs	
6	High Temperature, High Humidity Storage test	Ta= 50°C 80% RH, 240hrs	(Test in White Pattern)
7	Thermal cycles	-25°C(30min) ~60°C (30min), 50 cycle, 1hr/cycle	(Test in White Pattern)
8	Electrostatic Discharge	(Machine model) +/- 200V 0Ω , 200pF	Non-operation

Actual EMC level to be measured on customer application.


Note: The protective film must be removed before temperature test.

< Criteria >

In the standard conditions, there is not display function NG issue occurred. All the cosmetic specification is judged before the reliability stress.



11. Block Diagram

12. Packing

The information contained herein is the exclusive property of E Ink Holdings Inc., and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of E Ink Holdings Inc.

ALL TECHNOLOGIES. ALL COMPETENCIES. ONE SPECIALIST.

DATA MODUL AG Landsberger Straße 322 DE-80687 Munich Phone: +49-89-56017-0 DATA MODUL WEIKERSHEIM GMBH Lindenstraße 8 DE-97990 Weikersheim Phone: +49-7934-101-0

More information and worldwide locations can be found at