

SPECIFICATION

BTFT030M-02

3" - Mono- MCU

Version: 1.2 Date: 25.07.2016

Note: This specification is subject to change without prior notice

www.data-modul.com

			Issued No.				
Po	vici	ion L	listony	Revision		13	
	121	(1/1)	listory	Product Name			
		、		Customer Part	No.		
Date/Rev.			Contents of chan	ge		Reasons	Remarks
Ari. 28, 2016 Rev.01			- Initial release				
Jul. 25,2016	(C)	Hist.,37	Update customer F	P.N	Custo	mer request	
Rev.02	(D)	4	2.1.1 Parallel interfa Dummy read is del	ace leted	Error	correction	
	(C)	9	2.2 COMMANDS The descriptions of modified.	f parameters are	Custo	mer request	
	(C)	28	4.5 POWER OFF S EMERGENCY MO The sentences of e are modified.	SEQUENCE IN DE emergency mode	Custo	mer request	
					 		
	<u> </u>						

(C): Changed, (A): Appended, (D): Deleted, (F): Filled in

CONTENTS

OUTLINE DRAWING ATTACHED SHEET	2
1. BASIC SPECIFICATIONS	1
1.1 STRUCTURES	1
1.2 BLOCK DIAGRAM	
1.3 I/O TERMINALS	
2. FUNCTIONS	
2.1 OVERVIEW	
2.2 COMMANDS	
3. ABSOLUTE MAXIMUM RATINGS	
3.1 ELECTRICAL ABSOLUTE MAXIMUM RATINGS	
3.2 ENVIRONMENTAL ABSOLUTE MAXIMUM RATINGS	
4. ELECTRICAL SPECIFICATIONS	
4.1 DC CHARACTERISTICS	
4.2 AC CHARACTERISTICS	
4.3 USAGE OF TE OUTPUT	
4.4 RECOMMENDED SEQUENCE	
(ABNORMAL POWER OFF SEQUENCE)	
5. OPTICAL SPECIFICATIONS	
5 1 OPTICAL SPECIFICATION	29
5.2 DEFINITIONS AND CONDITIONS	
6. INSPECTION	
6.1 STANDARDS	32
6.2 LOTS	
6.3 INSPECTION CONDITION	
6.4 APPEARANCE STANDARD	
7. WARRANTY	
8. RELIABILITY	
8.1 RELIABILITY TESTING CONDITION	
8.2 MECHANICAL PERFORMANCE	

9. LCD MODULE USAGE AND PRECAUTIONS	
	40
9.2 ASSEMBLY PRECAUTIONS	40 41
9.3 HANDLING PRECAUTIONS	42
9.4 DISASSEMBLY AND MODIFICATION	
9.5 STORAGE	
9.6 DISPOSAL	
9.7 OTHERS	

OUTLINE DRAWING A	ttached sheet
-------------------	---------------

1. BASIC SPECIFICATIONS

This document gives the characteristics of the active matrix 3.0 inch monochrome TFT LCD.

1.1 STRUCTURES

No.	FACTOR	SPECIFICATIONS	UNIT
1	LCD structure	a-TFT LCD	-
2	Module size	87.15(W) x 36.7(H) x 10.5(D) (Max)	mm
3	Weight	36(without protection film)	g
4	Active Area [Screen Dimension]	72(W)×27(H) [3.0 inch]	mm
5	Viewing Area	74.9(W)×29.9(H)	mm
6	Number of dots	320 X 120 dots	-
7	Dot pitch	0.225(W) × 0.225(H)	mm
8	Dot layout	Square	-
9	Viewing direction	all-round view	-
10	Liquid crystal mode	IPS, normally black, transmissive type	-
11	Polarization plate	Anti glare	-

*1) See attached drawing for details.

1.2 BLOCK DIAGRAM

1.3 I/O TERMINALS

Pin No.	Name	I/O	Remarks			
1	GND	P	Ground			
2	GND	Р	Ground			
3	XRES		Display is initialized when XRES is set to "L".			
4	D/XC		Data command select signal.			
-			This pin is used for 8bit parallel and 4wire 8bit serial interface.			
			"L" = Command. "H" = Parameter			
5	XCS	I	Chip select signal. Active low, When XCS is "H", D7-D0 outputs			
_		-	are set to the high impedance.			
6	TE	0	V sync signal output pin for LCD display timing. When TEOFF			
_		-	command is entered, it changes to "L".			
7	D7	I/O	Parallel interface : data bus D1-D7			
8	D6	I/O	Serial interface : unused			
9	 D5	I/O				
10	D4	I/O				
11	D3	1/Q				
12	D2	1/Q				
13	D1	1/Q				
14		1/0	Parallel interface · Data bus D0			
	20(02)		Serial interface : Serial data input / output			
15	XWR		Parallel interface			
	(SCL)	•	180 parallel interface · connecting XWR signal			
	(001)		M68 parallel interface · connecting R/W signal			
			Serial interface : connecting the SCL signal			
16	GND	Р	Ground			
17	XRD		Parallel interface:			
		-	180 parallel interface : connecting XRD signal			
			M68 parallel interface : connecting E signal			
			Serial interface : unused			
18	C86		Interface selection pin.			
			Parallel interface:			
			"H" M68 8bit parallel interface			
			"L" I80 8bit parallel interface			
			Serial interface:			
			"H" 4wire 8bit serial interface			
			"L" 3wire 9bit serial interface			
			Please do not change input level for this terminal while operating.			
19	PS	I	Interface selection pin.			
			"H" parallel interface			
			"L" serial interface			
			Please do not change input level for this terminal while operating.			
20	VCC	P	Power supply			
21	VCC	P	Power supply			
22	GND	P	Ground			
23	NC	-	Non connection			
24	LED1_C	Р	LED cathode 1			
25	LED2_C	Р	LED cathode 2			
26	P_Down	Р	10K ohm (typ) resistor connected to GND			
27	NC	-	Non connection			
28	LED1_A	Р	LED anode 1			
29	LED2_A	P	LED anode 2			
30	NC	-	Non connection			

P: power supply, I: input O: output

2. FUNCTIONS

2.1 OVERVIEW

This LCD module has four types of MPU Interface used for transferring of command and pixel data. 1) Parallel interface

- I80 8bit parallel bus for transferring of commands and pixel data.
- M68 8bit parallel bus for transferring of commands and pixel data.
- 2) Serial interface
 - 4 wire serial bus for transferring of commands and pixel data.
 - 3 wire Serial bus for transferring of commands and pixel data.

2.1.1 Parallel interface

1) I80 8bit parallel interface

Write data mode(Access at XWR and XRD when XCS is "L".)

Read data mode(Access at XWR and XRD when XCS is "L".)

States, RAM contents and ID read commands (0Fh, 2Eh, DAh, DBh, DCh) are used this mode.

2) M68 8bit parallel interface

Write data mode (Access at E when XCS is "L")

Read data mode (Access at E when XCS is "L")

States, RAM contents and ID read commands (0Fh, 2Eh, DAh, DBh, DCh) are used this mode.

2.1.2 Serial interface

1) 4 wire 8bit Serial interface

Command input and data input are possible by using the following 4 pins: XCS, SCL, D/XC and SD. However, RAM data cannot be read.

The input format of data is 8 bits data. When it is inputting command and parameters, as well as display, use the following methods.

Write data mode

xcs		
D/XC_		
SD	CD7 CD6 CD5 CD4 CD3 CD2 CD1 CD0 D7 D6 D5 D4 D3 D2 D	
SCL	Write Display data or comm. parameter	and Display data or command parameter

Read data mode

Status and ID read commands (0Fh, DAh, DBh, DCh) are used this mode.

xcs			\square	
D/XC				
SD(input)		▲	\supset	
SD(output)	Read command Input Hi-z	Read data Output	lorL	 Next command Input Hi-z
SCL				

2) 3 wire 9bit Serial interface

Command input and data input are possible by using the following three pins: XCS, SCL, and SD. However, RAM data cannot be read.

The input format of data is D/XC + 8 bits. When it is inputting command and parameters, as well as display data, use the following methods.

Write data mode

XCS	
SD	$\frac{D/XC}{CD7} \left\langle CD7 \left\langle CD6 \right\rangle \left\langle CD4 \right\rangle \left\langle CD3 \right\rangle \left\langle CD2 \right\rangle \left\langle CD1 \right\rangle \left\langle CD0 \right\rangle \frac{D/Xd}{1} \left\langle D7 \right\rangle D6 \left\langle D5 \right\rangle \left\langle D4 \right\rangle \left\langle D3 \right\rangle \left\langle D2 \right\rangle \left\langle D1 \right\rangle \left\langle D0 \right\rangle \frac{D/Xd}{1} \left\langle D7 \right\rangle D6 \left\langle D5 \right\rangle \left\langle D4 \right\rangle \left\langle D3 \right\rangle \left\langle D2 \right\rangle \left\langle D1 \right\rangle \left\langle D7 \right\rangle D6 \left\langle D5 \right\rangle \left\langle D4 \right\rangle \left\langle D3 \right\rangle \left\langle D2 \right\rangle \left\langle D1 \right\rangle \left\langle D7 \right\rangle D6 \left\langle D5 \right\rangle \left\langle D4 \right\rangle \left\langle D3 \right\rangle \left\langle D2 \right\rangle \left\langle D1 \right\rangle \left\langle D7 \right\rangle \left\langle D6 \right\rangle \left\langle D5 \right\rangle \left\langle D4 \right\rangle \left\langle D5 \right\rangle \left\langle D5 \right\rangle \left\langle D4 \right\rangle \left\langle D5 \right\rangle \left\langle D5 \right\rangle \left\langle D4 \right\rangle \left\langle D5 \right\rangle \left\langle D$
SCL	 Write Display data or command Display data or command parameter parameter

Read data mode

Status and ID read commands (0Fh, DAh, DBh, DCh) are used this mode.

2.1.3 Display data format

320x120 dots, 16 gray scale

Write cycle	0	1	2		19200
D/XC	0	1	1	1	1
D7	CD7	0D3	2D3		38398D3
D6	CD6	0D2	2D2		38398D2
D5	CD5	0D1	2D1		38398D1
D4	CD4	0D0 \	2D0		38398D0
D3	CD3	1D3	3D3		38399D3
D2	CD2	1D2	3D2		38399D2
D1	CD1	1D1	3D1		38399D1
D0	CD0	1D0 \	3D0		38399D0

2.2 COMMANDS

No.	Comand	D7	D6	D5	D4	D3	D2	D1	D0	HEX	Function	Number of parameter	Note
1	NOP	0	0	0	0	0	0	0	0	00	No operation	none	-
2	SWRESET	0	0	0	0	0	0	0	1	01	Software reset	none	-
3	RDDSDR	0	0	0	0	1	1	1	1	0F	Read display self diagnostic results	2	*1
4	SLPIN	0	0	0	1	0	0	0	0	10	Sleep in	none	-
5	SLPOUT	0	0	0	1	0	0	0	1	11	Sleep out	none	-
6	NORON	0	0	0	1	0	0	1	1	13	Normal display mode on	none	-
7	DISINOFF	0	0	1	0	0	0	0	0	20	Display inversion off	none	-
8	DISINV	0	0	1	0	0	0	0	1	21	Display inversion on	none	-
9	DISPOFF	0	0	1	0	1	0	0	0	28	Display off	none	-
10	DISPON	0	0	1	0	1	0	0	1	29	Display on	none	-
11	CASET	0	0	1	0	1	0	1	0	2A	Column address set	4	-
12	PASET	0	0	1	0	1	0	1	1	2B	Page address set	4	-
13	RAMWR	0	0	1	0	1	1	0	0	2C	RAM write	write data count	-
14	RAMRD	0	0	1	0	1	1	1	0	2E	RAM read	read data count	-
15	TEOFF	0	0	1	1	0	1	0	0	34	TE signal output off	none	-
16	TEON	0	0	1	1	0	1	0	1	35	TE signal output on	1	-
17	MADCTL	0	0	1	1	0	1	1	0	36	RAM address control	1	-
18	COLMOD	0	0	1	1	1	0	1	0	3A	Display data format	1	-
19	RDID1	1	1	0	1	1	0	1	0	DA	Read ID1	2	*1
20	RDID2	1	1	0	1	1	0	1	1	DB	Read ID2	2	*1
21	RDID3	1	1	0	1	1	1	0	0	DC	Read ID3	2	*1

See <u>4.4 RECOMMENDED SEQUENCE</u> to design a command sequence and intervals.

*1 : Dummy Read + Read Data (parallel I/F only)

(1) NOP

Command: 1 Parameter: 0

This command does not affect the operation or other effect to the LCD module (visual).

Command	D7	D6	D5	D4	D3	D2	D1	D0	Hex	Description
NOP	0	0	0	0	0	0	0	0	00	No operation

(2) SWRESET

Command: 1 Parameter: 0

This command resets LCD module by software.

Command	D7	D6	D5	D4	D3	D2	D1	D0	Hex	Description
SWRESET	0	0	0	0	0	0	0	1	01	Soft ware reset

(3) RDDSDR

Command: 1 Par

Parameter: 2

This command indicates the current status of the display.

However this diagnostic function doesn't ensure to detect all of fault. It is necessary to wait for 150ms to obtain a correct diagnostic outcome after the SLPOUT command is executed.

Command/	D7	D6	D5	D4	D3	D2	D1	D0	Hex	Description
Parameter										
RDDSDR	0	0	0	0	1	1	1	1	0F	Read Display self diagnostic
										result
DD	DD	DD	DD	DD	DD	DD	DD	DD	хх	Dummy Read (Parallel I/F only)
P1	B7	B6	B 5	Χ	0	0	0	0	xx	Read Data

Refer to the following tables for the meaning of each bit.

No.	Function
B7	OK : Set to 0 after RESET. It is inverted by each SLPOUT command.
B6	NG : Set to 0 after RESET. It is NOT inverted by each SLPOUT command.
B5	
B4	X (1 or 0)
B3	0
B2	0
B1	0
B0	0

(4) SLPIN

Command: 1 Parameter: 0

This command sets the sleep state of the LCD module.

Please maintain the power supply to 150ms after SLPIN command executed.

See <u>4.4 RECOMMENDED SEQUENCE</u> to design a command sequence and intervals.

Comman	D7	D6	D5	D4	D3	D2	D1	D0	Hex	Description
d										
SLPIN	0	0	0	1	0	0	0	0	10	Sleep in

(5) SLPOUT

Command: 1 Parameter: 0

This command releases the sleep state of the LCD module. It is necessary to wait for 10msec for stabilizing internal power circuit

See <u>4.4 RECOMMENDED SEQUENCE</u> to design a command sequence and intervals.

Command	D7	D6	D5	D4	D3	D2	D1	D0	Hex	Description
SLPOUT	0	0	0	1	0	0	0	1	11	Sleep out

(6) NORON

Command: 1 Parameter: 0

This command sets the normal display.

Command	D7	D6	D5	D4	D3	D2	D1	D0	Hex	Description
NORON	0	0	0	1	0	0	1	1	13	Normal display mode on

(7) **DISINOFF**

Command: 1 Parameter: 0

This command sets the display to show a non-inverted image.

Command	D7	D6	D5	D4	D3	D2	D1	D0	Hex	Description
DISINOFF	0	0	1	0	0	0	0	0	20	Display inversion off

(8) DISINV

Command: 1 Parameter: 0

Parameter: 0

This command allows the display to invert the image without having to update the content of the display data RAM.

Command	D7	D6	D5	D4	D3	D2	D1	D0	Hex	Description
DISINV	0	0	1	0	0	0	0	1	21	Display inversion on

(9) **DISPOFF**

This command sets all dots to black.

Command	D7	D6	D5	D4	D3	D2	D1	D0	Hex	Description
DISPOFF	0	0	1	0	1	0	0	0	28	Display off

(10) DISPON

Command: 1 Parameter: 0

Command: 1

This command turns on the display.

Command	D7	D6	D5	D4	D3	D2	D1	D0	Hex	Description
DISPON	0	0	1	0	1	0	0	1	29	Display on

(11) **CASET**

Command: 1 Parameter: 4

This command sets the column address region when display data RAM is accessed from the MPU. Refer to the following formula, in case of the address changing.

CASET(End)	- CASET(Start)	+1 = 8	x N (N=1~40	*N is an	integer)
--------	------	----------	--------	--------	-------	--------	----------	----------

Command/	D7	D6	D5	D4	D3	D2	D1	D0	Hex	Description
Parameter										
CASET	0	0	1	0	1	0	1	0	2A	Column address set
P1	*	*	*	*	*	*	*	SC8	xx	Start (Upper data byte)
P2	SC7	SC6	SC5	SC4	SC3	SC2	SC1	SC0	хх	Start (Lower data byte)
P3	*	*	*	*	*	*	*	EC8	xx	End (Upper data byte)
P4	EC7	EC6	EC5	EC4	EC3	EC2	EC1	EC0	xx	End (Lower data byte)

*don' t care (H or L)

(12) PASET

Command: 1 Parameter: 4

This command sets the page address region when display data RAM is accessed from the MPU.

Command/	D7	D6	D5	D4	D3	D2	D1	D0	Hex	Description
Parameter										
PASET	0	0	1	0	1	0	1	1	2B	Page address set
P1	*	*	*	*	*	*	*	SP8	ХХ	Start (Upper data byte)
P2	SP7	SP6	SP5	SP4	SP3	SP2	SP1	SP0	XX	Start (Lower data byte)
P3	*	*	*	*	*	*	*	EP8	ХХ	End (Upper data byte)
P4	EP7	EP6	EP5	EP4	EP3	EP2	EP1	EP0	xx	End (Lower data byte)

*don' t care (H or L)

(13) **RAMWR**

Command: 1 Parameter: write data count

This command enables writing the data MPU to the display memory.

Command/	D7	D6	D5	D4	D3	D2	D1	D0	Hex	Description		
Parameter												
RAMWR	0	0	1	0	1	1	0	0	2C	RAM write		
P1	B17	B16	B15	B14	B13	B12	B11	B10	хх	Write data		
	There is no limitation in the number of data.											
Px	Bx7	Bx6	Bx5	Bx4	Bx3	Bx2	Bx1	Bx0	xx	Write data		

Display RAM access order according to <u>4.4 RECOMMENDED SEQUENCE</u>.

	. 0011
Page address :	00h to 13Fh
Column address	: 64h to DBh

(14) RAMRD

Command: 1 Parameter: read data count This command enables the data read state when the MPU reads data from the display memory. This command can not be used for serial interface mode.

Command/	D7	D6	D5	D4	D3	D2	D1	D0	Hex	Description	
Parameter											
RAMRD	0	0	1	0	1	1	1	0	2E	RAM read	
P1	DD	DD	DD	DD	DD	DD	DD	DD	DD	Dummy Read	
P2							R	ead o	data		
There is no limitation in the number of data.											
Px		Read data									

(15) **TEOFF**

Command: 1 Parameter: 0

This command disables timing signal output for avoiding tearing effect. This function is executed next frame, after this command is entered. TE terminal becomes low.

Command	D7	D6	D5	D4	D3	D2	D1	D0	Hex	Description
TEOFF	0	0	1	1	0	1	0	0	34	TE signal output off

(16) **TEON**

Command: 1 Parameter: 1

This command enables timing signal output for avoiding tearing effect. This function is executed next frame, after this command is entered.

Command/	D7	D6	D5	D4	D3	D2	D1	D0	Hex	Description
Parameter										
TEON	0	0	1	1	0	1	0	1	35	TE signal output on
P1	0	0	0	0	0	0	0	0	0	TE signal output mode

Refer to 4.3 USAGE OF TE OUTPUT.

(17) MADCTL

Command: 1 Parameter: 1

This command sets the access-direction of RAM and the scan-direction of gate output port.

Command/	D7	D6	D5	D4	D3	D2	D1	D0	Hex	Description
Parameter										
MADCTL	0	0	1	1	0	1	1	0	36	RAM address control
P1	B7	B 6	0	B 4	*	*	*	0	xx	

*don' t care (H or L).

LCD MODULE DEFAULT SETTING

Note: The figure shows the case of portrait configuration with the driver IC left.

(18) COLMOD

Command: 1 Parameter: 1

This command sets the gray scale mode.

Command/	D7	D6	D5	D4	D3	D2	D1	D0	Hex	Description
Parameter										
COLMOD	0	0	1	1	1	0	1	0	3A	Display data format
P1	*	*	*	*	*	0	B 1	B0	xx	I/F

*don' t care (H or L)

Function	B1	B0
2G/S Mode (Not used)	0	0
4G/S Mode (Not used)	0	1
Not defined	1	0
16G/S Mode	1	1

(19) RDID1

This command read the ID1 of LCD module.

Command/	D7	D6	D5	D4	D3	D2	D1	D0	Hex	Description
Parameter										
RDID1	1	1	0	1	1	0	1	0	DA	Read ID1
DD	DD	DD	DD	DD	DD	DD	DD	DD	XX	Dummy Read (Parallel I/F only)
P1	0	0	0	0	0	0	0	0	00	· · ·

(20) RDID2

This command read the ID2 of LCD module.

Command/ D7 D5 D4 D3 D2 D1 D0 D6 Hex Description Parameter RDID2 1 1 0 1 1 0 1 1 DB Read ID2 DD **Dummy Read** ΧХ (Parallel I/F only) **P1** 0 0 0 0 0 0 0 0 00

(21) RDID3

This command read the ID3 of LCD module.

Command: 1 Parameter: 2

Command/	D7	D6	D5	D4	D3	D2	D1	D0	Hex	Description		
Parameter												
RDID3	1	1	0	1	1	1	0	0	DC	Read ID3		
DD	DD	DD	DD	DD	DD	DD	DD	DD	XX	Dummy Read		
										(Parallel I/F only)		
P1	0	0	0	0	0	0	0	0	00			

Command: 1 Parameter: 2

Command: 1 Parameter: 2

3. ABSOLUTE MAXIMUM RATINGS

Stress beyond those listed under "ABSOLUTE MAXIMUM RATINGS" may cause permanent damage to the device.

3.1 ELECTRICAL ABSOLUTE MAXIMUM RATINGS

Item	Symbol	Rating	Unit
Power supply voltage	VCC	-0.3 to +4.0	V
Signal input voltage	VIN	-0.3 to VCC+0.3	V

3.2 ENVIRONMENTAL ABSOLUTE MAXIMUM RATINGS

	STMPOL	RATI		STMBOL CONDITION RATING			DEMADKS
ITEM	STWBUL	CONDITION	Min	Max	UNIT	REIVIARNO	
Ambient	TOP	Operation	- 20	70	٥.	No dew	
temperature	TST	Storage	- 20	80	-0	condition	

The absolute maximum ratings represent the rated values which LCD module can not exceed. When LCD modules are used beyond this rated value, the operating characteristics may be adversely affected.

4. ELECTRICAL SPECIFICATIONS

4.1 DC CHARACTERISTICS

4.1.1 DC specifications of general pins

						GND=0V
	Symbol		Rating		Lloit	Domarka
FARAIVIETER	Symbol	Min.	Тур.	Max.	Unit	Remarks
Power Supply voltage	VCC	3.0	3.3	3.6	V	
Power Supply		-	-	10	mA	Image: All pixels White *2
current		-	-	400	uA	Sleep in mode*3
Input voltage	High	0.7VCC	-	VCC	V	IIH = 10[uA](Max)
input voltage	Low	0	-	0.3VCC	V	IIL = -10[uA](Max)
	High	0.8VCC	-	VCC	V	IOH=-0.5mA
Oulput vollage	Low	0	-	0.2VCC	V	IOL=0.5mA
Input leak current	١L	-10	-	10	uA	Except VCC PIN

*1: Rated values indicate operating range of electrical functions.

*2: At the condition of input pins of D0~D7, D/XC, XWR, and XRD are fixed to "H" or "L". In-rush current is excluded.
*3: At the condition of input pins of D0~D7, D/XC, XWR, and XRD are fixed to "H" or "L". backlight is turned off.

4.1.2 Characteristics of LED and LED driving

DADAMETED	Symbol		Value		Lloit	Pomarka
FARAIVIETER	Symbol	Min.	Тур.	Max.	Unit	Remarks
LED forward voltage	Vf	-	2.8	3.4	V	Per LED *1
LED forward current	lf	-	25	280	mA	*2

*1: If=25mA, Ta=25°C(from Nichia's only one LED specification)

*2: LED allowable forward current is decremented by the ambient temperature. (Refer to Fig.1)

4.2 AC CHARACTERISTICS

4.2.1 Parallel interface timing

(1) I80 8bit parallel interface

Signal	Symbol	Parameter	MIN	MAX	Unit	Description
XCS	tCW8	XCS/set up time	20	-	ns	*1, *2, *3
D/XC	tAH8	address hold time	20	-	ns	
	tAW8	address set up time	20	-	ns	
XWR	tCYCW8	Write cycle	150	-	ns	
	tCCHW8	Control pulse H width (WR)	35	-	ns	
	tCCLW8	Control pulse L width (WR)	35	-	ns	
XRD	tCYCR8	Read cycle	440	-	ns	
	tCCHR8	Control pulse H width (RD)	90	-	ns	
	tCCLR8	Control pulse L width (RD)	150	-	ns	
D0 ~ D7	tDS8	data set time	20	-	ns	
	tDH8	data hold time	20	-	ns	
	tACC8	read access time	-	145	ns	*4 *5
	tOH8	output disable time	15	80	ns	

Voltage of VCC is in ranges of <u>4.1 DC CHARACTERISTICS</u>, ambient temperature is in a range of operating temperature.

- *1 The rise and fall times of all input signals (tr, tf) are equal or less than 40ns.
- *2 Input signal timings are specified based on 30% and 70% of VCC.

*3 tCCLW8 is set to the overlapping period when XCS is "L" and XWR is "L".

tCCLR8 is set to the overlapping period when XCS is "L" and XRD is "L" .

*4 tACC8 and tOH8 specified based on 20% and 80% of VCC.

*5 Measurement condition For maximum value : $C_L = 30pF$, For minimum value : $C_L = 8pF$

(2) M68 8bit parallel interface

Signal	Symbol	Parameter	MIN	MAX	Unit	Description
XCS	tCW6	XCS/set up time	20	-	ns	*1, *2, *3
D/XC	tAH6	address hold time	20	-	ns	
R/W	tAW6	address set up time	20	-	ns	
E	tCYCW6	Write cycle	150	-	ns	
	tCCHW6	Control pulse H width (WR)	35	-	ns	
	tCCLW6	Control pulse L width (WR)	35	-	ns	
E	tCYCR6	Read cycle	440	-	ns	
	tCCHR6	Control pulse H width (RD)	90	-	ns	
	tCCLR6	Control pulse L width (RD)	150	-	ns	
D0 ~ D7	tDS6	data set time	20	-	ns	
	tDH6	data hold time	20	-	ns	
	tACC6	read access time	-	145	ns	*4 *5
	tOH6	output disable time	15	80	ns	

Voltage of VCC is in ranges of <u>4.1 DC CHARACTERISTICS</u>, ambient temperature is in a range of operating temperature.

*1 The rise and fall times of all input signals (tr, tf) are equal or less than 40ns.

*2 Input signal timings are specified based on 30% and 70% of VCC.

*3 tCCLW6 is set to the overlapping period when XCS is "L" and XRD(E) is "L".

tCCLR6 is set to the overlapping period when XCS is "L" and XRD(E) is "L" .

*4 tACC6 and tOH6 specified based on 20% and 80% of VCC.

*5 Measurement condition For maximum value : $C_L = 30pF$, For minimum value : $C_L = 8pF$

Signal	Symbol	Parameter	MIN	MAX	Unit	Description
XCS	tCSS4	XCS/set up time	60	-	ns	*1 *0
	tCSH4	XCS/hold time	65	-	ns	1, 2
	tCHW4	XCS"H" pulse width	45	-	ns	
SCL	tSCYCW4	clock cycle	150	-	ns	
(Write)	tSLW4	"L" pulse width	35	-	ns	
	tSHW4	"H" pulse width	35	-	ns	
SCL	tSCYCR4	clock cycle	470	-	ns	
(Read)	tSLR4	"L" pulse width	135	-	ns	
	tSHR4	"H" pulse width	135	-	ns	
D/XC	tSAS4	Address setup time	30	-	ns	
	tSAH4	Address hold time	30	-	ns	
SD(input)	tSDS4	data set time	30	-	ns	
	tSDH4	data hold time	30	-	ns	
SD(output)	tACC4	data delay time(Hi-z-data)	5	130	ns	*9 *4
	tOH4	data delay time(data-Hi-z)	15	130	ns	3, 4

Voltage of VCC is in ranges of <u>4.1 DC CHARACTERISTICS</u>, ambient temperature is in a range of operating temperature.

*1 The rise and fall times of all input signals (tr, tf) are equal or less than 40ns.

*2 All input signal timings are specified based on 30% and 70% of VCC.

*3 All output signal timings are specified based on 20% and 80% of VCC.

*4 Measurement condition For maximum $C_L = 30pF$, For minimum $C_L = 8pF$

4.2.3 3 wire 9bit serial interface timing

Signal	Symbol	Parameter	MIN	MAX	Unit	Description
XCS	tCSS3	XCS/set up time	60	-	ns	*1, *2
	tCSH3	XCS/hold time	65	-	ns	
	tCHW3	XCS"H" pulse width	45	-	ns	
SCL	tSCYCW	clock cycle	150	-	ns	
(Write)	3	"L" pulse width	35	-	ns	
	tSLW3	"H" pulse width	35	-	ns	
	tSHW3					
SCL	tSCYCR3	clock cycle	470	-	ns	
(Read)	tSLR3	"L" pulse width	135	-	ns	
	tSHR3	"H" pulse width	135	-	ns	
SD(input)	tSDS3	data set time	30	-	ns	
	tSDH3	data hold time	30	-	ns	
SD(output)	tACC3	data delay time(Hi-z-data)	5	130	ns	*3, *4
	tOH3	data delay time(data-Hi-z)	15	130	ns	

Voltage of VCC is in ranges of <u>4.1 DC CHARACTERISTICS</u>, ambient temperature is in a range of operating temperature.

*1 The rise and fall times of all input signals (tr, tf) are equal or less than 40ns *2 All input signal timings are specified based on 30% and 70% of VCC.

*3 All output signal timings are specified based on 20% and 80% of VCC.

*4 Measurement condition For maximum value : C_L = 30pF , For minimum value : C_L = 8pF

4.2.4 Reset timing

Signal	Symbol	Parameter	MIN	MAX	Unit	Measurement Condition and Others
VDEC	tRW	reset pulse width	50	-	us	*1
ARES	tRT	clear reset	-	10	ms	*1, *2

Voltage of VCC is in ranges of <u>4.1 DC CHARACTERISTICS</u>, ambient temperature is in a range of operating temperature.

*1 The rise and fall times of the input signal (tr, tf) are equal or less than 100ns. Input signal timings are specified based on 30% and 70% of VCC.
*2 The driver IC initializes logic circuit for this period.

4.3 USAGE OF TE OUTPUT

4.3.1 TE output characteristics

Signal	Symbol	Parameter	Min.	Тур.	Max.	Unit	Conditions
TE	tVHW	TE pulse H width	133	153	181	us	
	tVCYC	TE period	14.4	16.6	19.6	ms	

*: At the condition of power supply voltage is in a range of <u>4.1 DC CHARCTERISTCS</u>.

4.3.2 TE Output and RAM Writing by Host

Timings are mentioned in order to prevent a tearing of display that is caused by running over of writing.

Data transmission start timing : tDTS1

It is necessary to start the data transmission within tDTS1(MAX).

Data transmission end timing : tDTE1

It is necessary to end the data transmission up to tDTE1(MIN).

16G/S Mode

Parameter	MIN	MAX	Unit	Remarks
tDTS1	-	89	us	
tDTE1	121	-	us	
tDTC1 (Tr,Tf<=15ns)	0.1 (*1)	0.37 (*2)	us	*1 : refer to 4.2 AC CHARACTERISTICS
tDTC1 (Tr,Tf<=100ns)	0.27 (*1)	0.37 (*2)	us	*2 : tDTS1=89us,tDTE1=121us

4.4 RECOMMENDED SEQUENCE

- -1) Start to supply system power (VCC).
- -2) Make a device reset after starting to supply the system power. (XRES must be kept "L" for more than 50us.)
- -3) Input control signal.
- -4) Wait more than 10ms after releasing the system reset *1)
- -5) Transfer commands for initial setting and turning on. (See 4.4.1 Power on sequence.) (Display is started.)
- -6) Transfer commands to turn off. (See 4.4.2 Power off sequence.)
- -7) Stop to supply system power.

Required intervals are described in the following chart and the table of "4.4.1" to "4.4.2".

Notes)

- * 1 XRES must be maintained to "LOW" more than 50us after turning on the system power (VCC).
- * 2 VCC(min) is minimum voltage of VCC. Please refer to 4.1. DC CHARACTERISTICS
- * 3 The rising speed of VCC should be less than 2V/100us.

4.4.1 Power on sequence

Command	Hex	Remarks
Power-C	N (VD	D)
XRES = "L" m	ore that	an 50us
XRES = "H" (reset r	elease)
More tha	n 10 [r	ns]
SLPOUT	11h	
More tha	n 10 [r	ns]
CASET	2Ah	
P1	00h	
P2	64h	
P3	00h	
P4	DBh	
PASET	2Bh	
P1	00h	
P2	00h	
P3	01h	
P4	3Fh	
COLMOD	3Ah	
P1	03h	16 gray scale
TEON	35h	
P1	00h	
NORON	13h	
DISINOFF	20h	
MADCTL	36h	
P1	00h	
RAMWR	2Ch	
dot #0 - #1		
dot #2 - #3		
-		Send display data
•		2 dot / cycle
•		(4 bit / dot)
dot #38396 - #38397		. , ,
dot #38398 - #38399		
DISPON	29h	

4.4.2 Power off sequence

Command	Hex	Remarks					
Display	on sta	te					
DISPOFF	28h						
Wait more t	han [5	i0ms]					
SLPIN	10h						
More than 150 [ms]							
Power - OFF							

4.4.3 Refresh sequence

This sequence should be implemented continuously in order to recover the display error due to noise etc.

Command	Hex	Remarks
SLPOUT	11h	
More tha	n 10 [r	ns]
CASET	2Ah	
P1	00h	
P2	64h	
P3	00h	
P4	DBh	
PASET	2Bh	
P1	00h	
P2	00h	
P3	01h	
P4	3Fh	
COLMOD	3Ah	
P1	03h	16 gray scale
TEON	35h	
P1	00h	
NORON	13h	
DISINOFF	20h	
MADCTL	36h	
P1	00h	
RAMWR	2Ch	
dot #0 - #1		
dot #2 - #3		
-		Send picture data
		2 dot / cycle
•		(4 bit / dot)
dot #38396 - #38397		
dot #38398 - #38399		
DISPON	29h	

4.4.4 Sleep out sequence

This sequence should be input in order to return from the sleep mode.

Command	Hex	Remarks
SLPOUT	11h	
More tha	n 10 [r	ns]
CASET	2Ah	
P1	00h	
P2	64h	
P3	00h	
P4	DBh	
PASET	2Bh	
P1	00h	
P2	00h	
P3	01h	
P4	3Fh	
COLMOD	3Ah	
P1	03h	16 gray scale
TEON	35h	
P1	00h	
NORON	13h	
DISINOFF	20h	
MADCTL	36h	
P1	00h	
RAMWR	2Ch	
dot #0 - #1		
dot #2 - #3		
		Send picture data
		2 dot / cycle
		(4 bit / dot)
dot #38396 - #38397		、
dot #38398 - #38399		
DISPON	29h	

4.4.5 Sleep in sequence

This sequence should be input in order to enter the sleep mode.

Command	Hex	Remarks				
Display on state						
DISPOFF	28h					
More that	More than 50 [ms]					
SLPIN	10h					
More than 150 [ms]						
Sleep in state						

4.5 POWER OFF SEQUENCE IN EMERGENCY MODE

(ABNORMAL POWER OFF SEQUENCE)

This power off sequence must be used only in emergency mode.

Please use 4.4 RECOMMENDED SEQUENCE for normal operation because this sequence may cause flicker and image sticking.

This sequence is applied only H/W reset. VCC VCC (min) 0V XRES

Symbol	Min	Тур	Max	unit
Та	50	-	-	[us]

Notes)

- This sequence will not cause any permanent failure to the LCD module. But flicker screen may occur temporally at next display on.
- (2) Current consumption after XRES ="L" is same as sleep in state.
- (3) Other signals (XCS, XWR, XRD, D/XC, D0-D7) can be set to low at same time as XRES. But there is possibility of short time data bus contention between display and controller when XRD and XRES are turned "L".

5. OPTICAL SPECIFICATIONS

5.1 OPTICAL SPECIFICATION

Item		Symbol	Min.	Rating Typ.	Max.	Unit	Definition (Condition)	Remark	
Contra	ast Ratio		CR	500	1000	-	-	1,2	-
Response	ti	r+tf	trf	-	40	-	ms	1,3	-
Color	V	V-x	Wx	0.275	0.315	0.355		1 /	
coordinates	V	V-y	Wy	0.292	0.332	0.372	-	1,4	-
Brightness		В	350	600	-	cd/m ²	1,6	-	
Brightness homogeneity		-	75	-	-	%	1,7	-	
Contrast ratio (Viewing angle)	φ=0°	<i>θ</i> =70°	CR	10	-	-			
	$\theta = \frac{1}{2} $	θ =55°	CR	40	-	-	-	1,5	-
	270°	$\theta = 40^{\circ}$	CR	150	-	-			

5.2 DEFINITIONS AND CONDITIONS

5.2.1 Definitions of optical characteristics

Definition 1

Measuring conditions

- (1) Instrument: DMS 803(301) (autronic-MELCHERS GmbH.), or equivalent.
- (2) Ambient temperature: Ta=25 °C
- (3) Display: white or black display on all screen, VCC=3.3V
- (4) Measure after 15 minutes of LED warm up.
- (5) Vf=2.8V, If=25mA per LED

Definition 2

This is a ratio between the screen surface reflectance or brightness of the white raster and the black raster.

Definition 3

tf: This is a time that decreases to 10% of total change of the screen surface brightness from the point of 90%, after data signal is switched from white-raster to black-raster.

tr: This is a time that increases to 90% of total change of the screen surface brightness from the point of 10%, after data signal is switched from black-raster to white-raster.

tr : Response time from Black to White

This is the x-y coordinate of White colors specified on the CIE1931 chromaticity diagram.

Definition 5

This is a maximum angle θ from the normal direction that keeps having the contrast ratio more than 10:1,40:1 and 150:1.

The angle on surface ϕ is defined respectively.

Definition 6

Measured at the center of active display area

Definition 7

Measurement point

Characteristics is measured at 5 points in the active area.

6. INSPECTION

6.1 STANDARDS

*ppm targets Major defects 100ppm Minor defects 1000ppm Note) This figure is a target. It is not guaranteed.

6.2 LOTS

Lot means the unit includes all products delivered to your company at one time.

6.3 INSPECTION CONDITION

1) Emviromental conditions :

1. Temperature/humidity cond	tion : Normal temprature	(25+- 5 degrees)	
	Normal humidity	(60+-20%RH)	
2. Iluminance environment :	Not lighted appearance :	800~2000Lx	
	Lighted appearance :	100~ 400Lx	
	* Some specif	ied patterns : 50Lx or the less	

Inspection method : Inspection by naked eye
 Inspect the screen by naked eye from a distance of about 30 cm and the angle shall be 30
 degrees
 from the vertical direction to the product.

Veiwing angle is 30 degrees from the vertical direction as shown in the picture below.

30 30° Х

3) Drive condition : It is done pursuant to product specification.

6.4 APPEARANCE STANDARD

6.4.1 Application scope

zone	definition
А	Active Area.
В	Area from outside of "A zone" to insight edge of metal frame.
С	Black painting Area.

6.4.3 General Appearance Specifications

No.	Items	Judgment criteria	Class
1	different	Not permitted.	Major
	specifications		
2	Damaged	Copper patterns on FPC must not be visible.	Minor
	resist on FPC		
3	Circuit pattern	Must not be peeled or separated from FPC.	Major
4	Conductive	No solder refuses or solder balls easily moving.	Minor
	refuses	Fixed particle which has no functional affect can be ignored.	
5	Dirt	Should not be prominent.	Minor
		Dirt on backside is permitted.	
6	I/F terminal	Should not be prominent.	Minor
	scratch / dirt		
7	Plating	Must not be peeled, no rust and no discoloration.	Minor
8	Soldering	Solder omissions is not permitted at any solder point.	Major
	defect	Solder bridges is not permitted.	Major
		Cold soldering is not permitted.	winor
9	Parts soldering	There must be fillet.	Minor
10	Metal frame Scratch / discoloration	Scratch out of viewing area and discoloration shall be ignored.	Minor
11	Metal frame	Repair of black paint is not permitted.	Minor
	black painting		
	area (zone C)	There must not be dents, dirt and scratches that influences product characteristic and	
	dent / dirt /	the process of the customer.	
	scratch	If any problems arise on this specification, they shall be solved through consultation between both parties.	
12	Cushion	Breakage on cushion	Minor
		Breakage on inner edge	_
		Dreakage of finite edge/	
		<breakage edge="" on="" outer=""></breakage>	
		Size(mm) Tolerance (Note)	
		L≦3.0	
		W≦2/3*w 3	
		T≦2/3*t	
		w: cushion width	
		t : cushion thickness	
		Note : Number of cushion breakage in circumference.	
		minimum cushion breakage will be checked by appearance inspection	

7. WARRANTY

Please contact Data Modul for further information.

8. RELIABILITY

8.1 RELIABILITY TESTING CONDITION

No.	Parameter	Condition	Ratings	Evaluation Criteria
1	High-temperature storage	80 °C ± 2 °C	500 h	After the test, and 2 hours
2	Low-temperature storage	-30 °C ± 2 °C	500 h	temperature, it should not
3	Temperature cycling	-30 °C <-> 80 °C	100	be changed in external
		(0.50) (0.50)	cycles	appearance and/or display
4	High-temperature operation	70 °C ± 2 °C	500 h	impair use.
5	Low-temperature operation	-20 °C ± 2 °C	500 h	
6	High-temperature,	50 °C 90%RH	500 h	
	high-humidity operation			

8.2 MECHANICAL PERFORMANCE

	-		-
1	Vibration	5-10 Hz, +10dB/octave 10 - 50Hz	There must be no
	(Non-operating)	5.58m2/s3 (0.0558g2 / Hz) 50 - 500Hz,	abnormalities of function
		-10db/octave	or display.
		X, Y, Z / 30 minutes each	
2	Shock	100G 6ms	
	(Non-operating)	Sinusoidal half wave	
		$\pm X$, $\pm Y$, $\pm Z$ / 1 cycles each	
3	Package vibration	5 - 55 Hz variable / 1 cycle (15 min.)	
		• 5Hz~20Hz 2.0mmp-p	
		• 20Hz~55Hz 1.5G	
		2 cycles for each in X, Y, Z direction	
4	Package drop	According to JIS-Z0202	
		Height for plane drop: 50 cm	
		Height for corner and ridge drop: 50 cm	
5	ESD	Contact Discharge	There must be no
	(Non-operating)	100pF, 1500ohm, ±8kV	abnormalities of function
		Panel center	or display.
		3 times (intervals of 1s)	Current consumption
		Non-operating	should be less than
6	ESD	Air Discharge	maximum current.
	(Non-operating)	100pF, 1500ohm, ±8kV	
		4 points to metal frame	
		3 times for each (intervals of 1s)	
		Non-operating	

9. LCD MODULE USAGE AND PRECAUTIONS

9.1 DESIGN OF APPLICATION

- 1) To prevent damage to the module, design applications in consideration of the following:
 - The absolute maximum ratings represent the rated values which the LCD module must not exceed. When modules are used beyond this rating, the operating characteristics may be irreversibly affected.
 - It is recommended that power supply lines [VCC] include current surge protection (fuses, etc.).
 Without such protection, foreign material or isolated circuit failures can cause overheating or smoke emission, resulting in injury.
 - When logic circuit power is off, do not apply any signals to the input terminals.
 - Potentially irreversible abnormality may occur with forcible disconnection of LCD module power supply, such as removing the device battery.
 - Employ designs that avoid direct contact with the IC.
 In the event there is a chance of contact, please contact Data Modul. regarding precautions.
- 2) To prevent erroneous operation, design applications in consideration of the following:
 - To prevent the occurrence of erroneous operation caused by noise, pay special attention to satisfying specified operating conditions.

This includes precautionary measures, like using short signal cables.

- Note that peripheral devices can cause mutual noise interference with LCD modules.
 - In particular, input devices such as touch panels may emit operational level noise as radiation, even when these devices are not in operation.

Provisions for, and evaluation of, performance under actual usage conditions with the system are highly recommended.

- The driver IC used by the LCD module is easily affected by light exposure because it is mounted as a bare chip on the module.

To avoid increased current consumption and accompanied shut-down of power supply, give consideration to taking light-shielding countermeasures, and evaluating performance in the system.

Just as with general electronic components, ESD may cause LCD modules to malfunction.
 ESD countermeasures should be considered around components surrounding the LCD module, especially the driver IC and power IC.

When an LCD module is mounted near the outer surface of a product, take extra care that components such as these cannot act as conductive paths for ESD.

- By command, LCD module operation status and display data is saved, but that data can easily be altered by external noise.

Noise should be minimized, or its effect avoided, at the device or system level.

- As unexpected noise may occur, periodic refresh operations, such as resetting commands or resending display data, are highly recommended as part of the software routine.
- As display problems can occur when signals are fed to the input/output cable NC terminals, system

designs should keep them open.

- 3) System designs should consider the following:
 - Design applications so that excessive force will not be applied to the surface, perimeter or adjoining areas of LCD modules, as this may cause display panel color tone to vary.
 - Be sure that the LCD module is free from twisting, warping, or distortion as any stress can have great influence on the display quality.
 - Ensure sufficient stiffness of the system's outer case or frame.
 - Also, exercise caution when handling.
 - Use the backlight frame section or metal frame section to set and fix the LCD module position inside the system.

Using other components to fix the LCD module position may sever circuits on the FPC.

- As part of the construction of the LCD module, the FPC board with on-board electronic components is only partly fixed to the case, in consideration of reworking. Potentially, the FPC may curve under the weight of individual components, and they may protrude beyond the outline of the case. As such, preventive measures should be taken to prevent any electrical contact between the LCD module components and other circuits inside the system.
- The viewing angle of the LCD module and that of the system should match.
- If a display frame or printed frame is provided, place it inside the viewing area and outside the active area for a good appearance.
- 4) Liquid crystal display elements are temperature dependent.
 Be sure to use the LCD modules within the specified operating temperature range, as recognition of the display becomes difficult when the LCD module is used outside its range.
- 5) To avoid EMI, preventive measures should be implemented in the system.
- 6) Note that sudden powering-up sends excessive inrush current to the LCD module, and can affect the entire system.

9.2 ASSEMBLY PRECAUTIONS

- 1) Static electricity can destroy LCD module elements, so carefully observe the following during assembly:
 - Be sure to ground your body when handling the LCD module.
 - Make sure that solder guns and all other tools required for assembly have been grounded.
 - The use of anti-static mats ($0.5k 1M\Omega$) on the workbench for grounding is recommended.
 - To reduce occurrence of static electricity, avoid using this product in dry environments, (less than 50%RH).
 - To eliminate static electricity, the use of an ionizer (anti-static air blower) is recommended.
 - A protective film has been attached to the surface of the LCD panel.
 When peeling off the protective film, do so carefully near an ionizer.
 - To guard against performance degradation of the LCD module caused by destructive forces such as static electricity, etc., avoid direct contact to the terminal electrodes of connectors and FPC circuit pattern when handling.

- The LCD Panel surface is protected by a protective film, which must be removed before system installation. Units having been in prolonged storage may have some adhesive residue left on the display panel. In such cases, please remove the contaminant according to the procedure in item 5) under "10.3 Handling Precautions" below.
- As removing the LCD module's protective film makes the polarizer susceptible to the adhesion of foreign material, do so immediately prior to assembly.
- 4) Exercise caution when applying adhesive to the LCD module as it is difficult to remove.
- 5) Do not touch or handle the LCD module directly with bare hands as residue of dirt, oil or water can cause corrosion.

Be sure to wear finger stalls or gloves when handling LCD modules.

(CAUTION: The following applies to bare panel modules)

When holding an LCD module, carefully hold the panel by the edges of the glass plate.

- 6) Handle LCD modules by their edges.Handling the screen directly can cause display problems or cracks in the panel.
- 7) When installing the LCD module, don't forcibly bend or stretch the input/output cable.
 Bending or twisting the FPC section may damage circuit patterns.
 Applying any excessive stress to the LCD module can damage it.
- 8) Do not apply pressure to the LSI chip or surrounding mold area as it can cause damage.
- 9) Do not use sharp, pointy or rigid tools when handing LCD panels.

These objects can scratch or nick the glass panel, which can cause it to crack.

- 10) Perform the LCD module power on/off of the system assembly inspection according to the procedure in the specification document.
- 11) Do not allow non-atmospheric, specialty gases to contact with the LCD module. Check plastic or rubber materials to be used in the system beforehand as gas they produce can cause functional degradation of internal components like the LCD panel polarizer.

9.3 HANDLING PRECAUTIONS

- 1) The display panel is made of glass. Do not subject it to mechanical shock such as dropping it from a high position, etc.
- 2) If the display panel is damaged and internal liquid crystal substance leaks out, be sure not to inhale or consume it.

Direct contact with skin should also be avoided.

Should contact with the internal liquid crystal substance occur, promptly apply the following responses:

- Contact with clothing: Remove affected items
- Contact with skin: Wash off using soap and running water
- Contact with eyes: Wash out for 15 min. or longer with clean water then consult a physician
- Ingestion: Induce vomiting with water and consult a physician

- Take precautions in handling the LCD module because the glass plate has very keen edges. Should it break, take extra care to avoid injury from chips, shards and flying glass.
- 4) The polarizer covering the display panel surface of the LCD module is soft and can be easily scratched.
 Handle this polarizer carefully, avoiding contact with sharp, pointy instruments or stiff cloth.
- 5) If the polarizer surface becomes contaminated, use the following recommended or equivalent adhesive tape for contaminants removal:
 - Scotch-brand mending tape (No. 810) or an equal similar product.
- Do not breathe on the display surface or use ethyl alcohol solvent for contaminant removal. This can cause cloudiness in the polarizer surface.

Furthermore, do not use the following as they can damage the polarizer:

- Water
- Ketones
- Aromatic solvents
- 7) Avoid using the LCD module under condensation or high-humidity environments as this may cause polarizer or other functional degradation.
- 8) After being in a high-humidity or condensation environment, keep the LCD module at room temperature more than 30 minutes before using.
- 9) Current flow in a condensation or high-humidity environment can cause corrosion of electrodes. Also, take precautions against water getting inside the LCD module as it can cause damage.
- 10) Liquid crystal freezes when stored below the storage temperature range and such freezing may cause orientation defects or bubbles (black or white) to appear in the LCD panel. Bubbles may also occur if the panel receives an impact in a low-temperature environment.
- 11) If the LCD module is left operating for a long time with the same display showing, the displayed pattern may leave traces on the screen or the contrast may become inconsistent.
- 12) As optimal operating voltage of the LCD module depends on the surrounding temperature, operation in a high-temperature environment may cause slight flickering.

9.4 DISASSEMBLY AND MODIFICATION

 Do not attempt to disassemble or modify the LCD module. The internal construction of the LCD module is susceptible to shock, and foreign material or damage can cause screen loss. Data Modul shall not be responsible in the event that a customer attempts to disassemble or modify the LCD module.

9.5 STORAGE

- 1) When storing LCD modules, avoid the following conditions or environments:
 - Exposure to direct sunlight or fluorescent lighting.
 - High-temperature/high-humidity or very low-temperature (below 0°C) environments.
 - Exposure to water droplets, condensation, etc.

Furthermore, keep LCD modules in anti-static bags to prevent static electricity charge ups.

Whenever possible, LCD modules should be stored in the same conditions in which they were shipped

from Data Modul. When doing so, ensure there are no water droplets, or condensation.

- Take precaution to minimize corrosion of electrodes.
 Corrosion of electrodes is accelerated by moisture, condensation or a current flow in a high-humidity environment.
- 3) Recommended storage conditions:
 - Storage environment : +15 °C to 35 °C, less than 65%RH
 - Duration: up to 12 months after shipping date
- 4) The shipping cartons must not be stacked up over 1.8m in height.

9.6 DISPOSAL

 When disposing of LCD modules, consult companies authorized to handle industrial waste treatment. When incineration is the method of LCD module disposal, relevant environmental legislation must be observed.

9.7 OTHERS

- This product is designed to be used in general electronic devices (such as office equipment, telecommunications equipment, home electronics, or video game devices). Do not use this product in applications that require an extremely high level of reliability and safety, especially in devices that may cause direct bodily damage to end users (such as equipment for aerospace, traffic control, nuclear, medical, life-support, or safety use).
- 2) Data Modul shall not be responsible for defects that occur in this product or in equipment connected to this product if the product is used in an environment that exceeds the ranges specified in this document, or in an environment not described in this document.
- Use this product within the scope of conditions and precautions set forth in this document.
 Even when used according to guidelines ensure sufficient safety at a system and design level to avoid the operation of this product becoming the cause of personal injury, fire or wider damage.

ТЕХ.Ф.Н.В. ТЕЛХ.Ф.Н.В. ТЕЛХ.Ф.Н.В. 2015/09/24 — 2015/09/24 — Pin No. L/F Terminal 01 GND 02 GND 03 XRES 04 D/XC 05 XCS 06 TE 07 D7 08 D6 09 D5 10 D4 11 D3 12 D1 14 D0(SD) 15 XWR(SCL) 16 GND 17 XRD 18 C86 19 PS 20 VCC 21 VCC 22 GND 23 N.C. 24 LED1.C 25 LED2.C * 26 28 LED1.A 29 LFD2.A	Here's		 	水平
2015/09/24 — Pin No. I/F Terminal 01 GND 02 GND 03 XRES 04 D/XC 05 XCS 06 TE 07 D7 08 D6 09 D5 10 D4 11 D3 12 D2 13 D1 14 D0(SD) 15 XWR(SCL) 16 GND 17 XRD 18 C86 19 PS 20 VCC 21 VCC 22 GND 23 N.C. 24 LED1.C 25 LED2.C * 26 P.Down 27 N.C. 28 LED1.A 29 LED2 A	企		作成平月日	TFIX
Pin No. L/F Terminal 01 GND 02 GND 03 XRES 04 D/XC 05 XCS 06 TE 07 D7 08 D6 09 D5 10 D4 11 D3 12 D2 13 D1 14 D0(SD) 15 XWR(SCL) 16 GND 17 XRD 18 C86 19 PS 20 VCC 21 VCC 22 GND 23 N.C. 24 LED1_C 25 LED2_C 26 P_Down 27 N.C. 28 LED1_A 29 LED1A		2	015/09/24	_
Pin No. I/F Terminal 01 GND 02 GND 03 XRES 04 D/XC 05 XCS 06 TE 07 D7 08 D6 09 D5 10 D4 11 D3 12 D2 13 D1 14 D0(SD) 15 XWR(SCL) 16 GND 17 XRD 18 C86 19 PS 20 VCC 21 VCC 23 N.C. 24 LED1_C 25 LED2_C 26 P_Down 27 N.C. 28 LED1_A 29 1 FD2 A				
Pin No. I/F Terminal 01 GND 02 GND 03 XRES 04 D/XC 05 XCS 06 TE 07 D7 08 D6 09 D5 10 D4 11 D3 12 D2 13 D1 14 D0(SD) 15 XWR(SCL) 16 GND 17 XRD 18 C86 19 PS 20 VCC 21 VCC 23 N.C. 24 LED1_C 25 LED2_C 26 P_Down 27 N.C. 28 LED1_A 29 J ED2 A				
01 GND 02 GND 03 XRES 04 D/XC 05 XCS 06 TE 07 D7 08 D6 09 D5 10 D4 11 D3 12 D2 13 D1 14 D0(SD) 15 XWR(SCL) 16 GND 17 XRD 18 C86 19 PS 20 VCC 21 VCC 22 GND 23 N.C. 24 LED1_C 25 LED2_C * 26 27 N.C. 28 LED1_A 29 LED1_A			Pin No.	I/F Terminal
25 02 GND 03 XRES 04 D/XC 05 XCS 06 TE 07 D7 08 D6 09 D5 10 D4 11 D3 12 D2 13 D1 14 D0(SD) 15 XWR(SCL) 16 GND 15 XWR(SCL) 16 GND 17 XRD 18 C86 19 PS 20 VCC 21 VCC 22 GND 23 N.C. 24 LED1_C 25 LED2_C * 26 7 N.C. 28 LED1_A 29 J ED2_A 4 29			01	GND
25 03 XRES 04 D/XC 05 XCS 06 TE 07 D7 08 D6 09 D5 10 D4 11 D3 12 D2 13 D1 14 D0(SD) 15 XWR(SCL) 16 GND 17 XRD 18 C86 19 PS 20 VCC 21 VCC 22 GND 23 N.C. 24 LED1_C 25 LED2_C * 26 P_Down 27 27 N.C. 28 LED1_A 29 LED1_A			02	GND
25 25 06 TE 07 07 07 08 06 09 05 10 04 07 07 07 08 09 05 10 04 11 07 07 08 10 04 11 07 07 08 10 04 11 07 07 08 10 04 11 03 12 02 13 11 14 D(SD) 15 XWR(SCL) 16 GND 17 XRD 18 C86 19 PS 20 VCC 21 VCC 22 GND 23 N.C. 24 LED unit lot stamp * 26 P_Down 27 N.C. 28 LED 1_A 29 LED 2 14 25 20 20 20 20 20 20 20 20 20 20			03	XRES
25 06 TE 07 07 08 09 05 10 04 11 03 12 02 13 01 14 00(SD) 15 XWR(SCL) 16 GND 17 XRD 18 C86 19 PS 20 VCC 21 VCC 22 GND 23 N.C. 24 LED unit lot stamp * 26 PDown 27 N.C. 28 LED 1_A 29 LED 2 A	F		04	D/XC
25 25 08 09 09 05 10 04 11 03 12 02 13 01 14 00(SD) 15 XWR(SCL) 16 GND 17 XRD 18 C86 19 PS 20 VCC 21 VCC 22 GND 23 N.C. 24 LED unit lot stamp * 26 PDown 27 N.C. 28 LED 1_A 29 LED 2 A			05	XCS
25 07 07 08 09 05 10 04 11 03 12 02 13 01 14 14 0(SD) 15 XWR(SCL) 16 GND 17 XRD 18 C86 19 PS 20 VCC 21 VCC 22 GND 23 N.C. 24 LED unit lot stamp * 26 P_Down 27 N.C. 28 LED 1_A 29 LED 2A			06	TE
25 08 09 05 10 04 11 03 12 02 13 01 14 10 12 02 13 01 14 10 15 XWR(SCL) 16 GND 17 XRD 18 C86 19 PS 20 VCC 21 VCC 22 GND 23 N.C. 24 LED unit lot stamp * 26 PDown 27 N.C. 28 LED 1A 29 LED 2A	~		07	D7
25 09 D5 10 D4 11 D3 12 D2 13 D1 14 D0(SD) 15 XWR(SCL) 16 GND 17 XRD 18 C86 19 PS 20 VCC 21 VCC 22 GND 23 N.C. 24 LED1_C 25 LED2_C 26 P_Down 27 N.C. 28 LED1_A 29 LED1_A			08	D6
10 D4 11 D3 12 D2 13 D1 14 D0(SD) 15 XWR(SCL) 16 GND 17 XRD 18 C86 19 PS 20 VCC 21 VCC 22 GND 23 N.C. 24 LED1_C 25 LED2_C 26 P_Down 27 N.C. 28 LED1_A 29 LED1_A	\rightarrow \leq 25 \rightarrow		09	D5
iii D3 iii D3 iii D2 iii D1 iii D2 iii D1 iii D2 iii D1 iii D2 iii D1 iii D0 iii D3 iiii D2 iiiii D2 iiiiiiiii D1 iiiiiiiii D3 iiiiiiiiiiiiiii D1 iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii			10	D4
12 D2 13 D1 14 D0(SD) 15 XWR(SCL) 16 GND 17 XRD 18 C86 19 PS 20 VCC 21 VCC 22 GND 23 N.C. 24 LED1_C 25 LED2_C 26 P_Down 27 N.C. 28 LED1_A 29 LED1_A			11	D3
Image: Comportents of area Image: Comportent of area Image: Comportent of area Image: Comportent of area			12	D2
image image <td< td=""><td></td><td></td><td>13</td><td>D1</td></td<>			13	D1
Comportents F 3rea F 0 0 0 0 0 0 17 XRD 18 C86 19 PS 20 VCC 21 VCC 22 GND 23 N.C. 24 LED1_C 25 LED2_C * 26 27 N.C. 28 LED1_A 29 LED2_A			14	D0(SD)
comportents F I G GND area 17 XRD 18 C86 19 PS 20 VCC 21 VCC 21 VCC 22 GND 23 N.C. 24 LED1_C 25 LED2_C 26 P_Down 27 N.C. 28 LED1_A 29 LED2_A		-	15	XWR(SCL)
3rea 17 XRD 18 C86 19 PS 20 VCC 21 VCC 22 GND 23 N.C. 24 LED1_C 25 LED2_C 26 P_Down 27 N.C. 28 LED1_A 29 LED2_A	compornents / F	൭഻	16	GND
Image: Non-organization Image: Non-organization Ima	area	V	17	XRD
19 PS 20 VCC 21 VCC 22 GND 23 N.C. 24 LED1_C 25 LED2_C * 26 P_Down 27 N.C. 28 LED1_A 29 LED2_A			18	C86
20 VCC 21 VCC 22 GND 23 N.C. 24 LED1_C 25 LED2_C * 26 P_Down 27 N.C. 28 LED1_A 29 LED2_A			19	PS
21 VCC 22 GND 23 N.C. 24 LED1_C 25 LED2_C * 26 P_Down 27 N.C. 28 LED1_A 29 LED2_A			20	VCC
Image: LED unit lot stamp Image: LED unit lot stamp 22 GND 23 N.C. 24 LED1_C 25 LED2_C * 26 27 N.C. 28 LED1_A 29 LED2_A			21	VCC
LED unit lot stamp 23 N.C. 24 LED1_C 25 LED2_C * 26 P_Down 27 N.C. 28 LED1_A 29 LED2_A			22	GND
LED unit lot stamp 24 LED1_C 25 LED2_C * 26 P_Down 27 N.C. 28 LED1_A 29 LED2 A			23	N.C.
* <u>LED1_0</u> * <u>25</u> <u>LED2_C</u> * <u>26</u> <u>P_Down</u> <u>27</u> <u>N.C.</u> <u>28</u> <u>LED1_A</u> <u>29</u> <u>LED1_A</u>	r \LED unit lot stamp		24	LED1 C
* 26 P_Down 27 N.C. 28 LED1_A 29 LED2 A	<u>.</u>		25	LED2 C
27 N.C. 28 LED1_A 29 LED2_A		*	26	P Down
28 LED1_A			27	N C
29 I FD2 A			28	LED1 A
			29	LED? A

DATA MODUL

ALL TECHNOLOGIES. ALL COMPETENCIES. ONE SPECIALIST.

DATA MODUL AG Landsberger Straße 322 DE-80687 Munich Phone: +49-89-56017-0 DATA MODUL WEIKERSHEIM GMBH

Lindenstraße 8 DE-97990 Weikersheim Phone: +49-7934-101-0

More information and worldwide locations can be found at

www.data-modul.com