# DATA MODUL



# **Specification**

#### G057VCE-TH1

5,7" - 640 x 480 - VGA - RGB/TTL

Spec Revision: 2.1 Revision Date: 30.11.2023

Note: This specification is subject to change without prior notice

**Passion Displayed** 



Tentative Specification
 Preliminary Specification
 Approval Specification

# MODEL NO.: G057VCE SUFFIX: TH1

| Customer:   |           |
|-------------|-----------|
| APPROVED BY | SIGNATURE |
|             |           |

Name / Title Note

Please return 1 copy for your confirmation with your signature and comments.

| Approved By | Checked By | Prepared By |
|-------------|------------|-------------|
| 林秋森         | 吳承旻        | 許秝茵         |



### **CONTENTS**

| 1. GENERAL DESCRIPTION           |                   | 5      |
|----------------------------------|-------------------|--------|
| 1.1 OVERVIEW                     |                   | 5      |
| 1.2 FEATURE                      |                   | 5      |
| 1.3 APPLICATION                  |                   | 5      |
| 1.4 GENERAL SPECIFICATIONS       |                   | 5      |
| 1.5 MECHANICAL SPECIFICATIONS    |                   | 6      |
| 2. ABSOLUTE MAXIMUM RATINGS      |                   |        |
| 2.1 ABSOLUTE RATINGS OF ENVIRO   | NMENT             | 7      |
| 2.2 ELECTRICAL ABSOLUTE RATING   | S                 | 8      |
| 2.2.1 TFT LCD MODULE             |                   |        |
| 2.2.2 BACKLIGHT UNIT             |                   |        |
| 3. ELECTRICAL CHARACTERISTICS    |                   | 9      |
| 3.1 TFT LCD MODULE               |                   | 9      |
| 3.2 BACKLIGHT UNIT               |                   | 11     |
| 4. BLOCK DIAGRAM                 |                   |        |
| 4.1 TFT LCD MODULE               |                   |        |
| 5. INPUT TERMINAL PIN ASSIGNMENT |                   | 13     |
| 5.1 TFT LCD MODULE               |                   | 13     |
| 5.2 BACKLIGHT UNIT(CONVERTER C   | ONNECTOR PIN)     | 15     |
| 5.3 COLOR DATA INPUT ASSIGNMEN   |                   |        |
| 6. INTERFACE TIMING              |                   | 17     |
| 6.1 DE MODE INPUT SIGNAL TIMING  |                   |        |
| 6.2 SYNC MODE INPUT SIGNAL TIMI  | NG SPECIFICATIONS |        |
| 6.3 AC ELECTRICAL CHARACTERIST   | ICS               |        |
| 6.4 POWER ON/OFF SEQUENCE        |                   | 21     |
| 6.5 SCANNING DIRECTION           |                   | 23     |
| 7. OPTICAL CHARACTERISTICS       |                   | 24     |
| 7.1 TEST CONDITIONS              |                   | 24     |
| 7.2 OPTICAL SPECIFICATIONS       |                   | 24     |
| 8. RELIABILITY TEST CRITERIA     |                   | 27     |
| 9. PACKAGING                     |                   |        |
| 9.1 PACKING SPECIFICATIONS       |                   |        |
| 9.2 PACKING METHOD               |                   |        |
| 9.3 UN-PACKING METHOD            |                   |        |
| 10. DEFINITION OF LABELS         |                   |        |
| 10.1 INX MODULE LABEL            |                   |        |
| 11. PRECAUTIONS                  |                   |        |
| Version 2.1                      | 1 December 2023   | 2 / 43 |



| Appendix. SYSTEM COVER DESIGN NOTICE   | 35 |
|----------------------------------------|----|
| 12. MECHANICAL CHARACTERISTICS         | 33 |
| 11.3 OTHER PRECAUTIONS                 |    |
| 11.2 STORAGE PRECAUTIONS               | 31 |
| 11.1 ASSEMBLY AND HANDLING PRECAUTIONS | 31 |
|                                        |    |

The copyright belongs to InnoLux. Any unauthorized use is prohibited.



### **REVISION HISTORY**

| Version | Date          | Page | Description                                                                                                                                  |
|---------|---------------|------|----------------------------------------------------------------------------------------------------------------------------------------------|
| Ver 2.0 | 06, JAN, 2023 | All  | Approval Specification was first issued.                                                                                                     |
|         |               |      | Modify 1.2 FEATURE                                                                                                                           |
| Ver 2.1 | 30,Nov,2023   | P5   | Before: - DE (Data Enable) mode and DE+SYNC mode selection                                                                                   |
|         |               |      | After: - DE (Data Enable) mode and SYNC mode selection                                                                                       |
|         |               | P7   | 2.1 ABSOLUTE RATINGS OF ENVIRONMENT                                                                                                          |
|         |               | P7   | Modify Note(2) Vcc=5.0V to Vcc=3.3V                                                                                                          |
|         |               |      | 5.1 TFT LCD MODULE                                                                                                                           |
|         |               | P13  | Modify Pin no 35 of Function<br>DE / HV mode select to DE / SYNC mode select.<br>High $\rightarrow$ HV mode to High $\rightarrow$ SYNC mode. |
|         |               |      | Modif 6.1 title                                                                                                                              |
|         |               | P17  | Before: 6.1 INPUT SIGNAL TIMING SPECIFICATIONS                                                                                               |
|         |               |      | After: 6.1 DE Mode INPUT SIGNAL TIMING SPECIFICATIONS                                                                                        |
|         |               |      | Modify 6.2 title & INPUT SIGNAL TIMING DIAGRAM                                                                                               |
|         |               | P19  | Before:6.2 DE+Sync Mode INPUT SIGNAL TIMING SPECIFICATIONS                                                                                   |
|         |               |      | After: 6.2 SYNC Mode INPUT SIGNAL TIMING SPECIFICATIONS                                                                                      |

### INNOLUX 群創光電

### 1. GENERAL DESCRIPTION

#### **1.1 OVERVIEW**

G057VCE-TH1is a 5.7" TFT Liquid Crystal Display IAV module with LED Backlight units and 40 pins 1ch- TTL interface. This module supports 640 x 480 VGA mode and can display 262K colors.

The PSWG is to establish a set of displays with standard mechanical dimensions and select electrical interface requirements for an industry standard 5.7" VGA LCD panel and the LED driving device for Backlight is built in PCBA.

#### 1.2 FEATURE

- VGA (640 x 480 pixels) resolution
- DE (Data Enable) mode and SYNC mode selection
- TTL Interface
- PSWG (Panel Standardization Working Group)
- Wide operating temperature.
- Reversible scan direction
- RoHS compliance

#### **1.3 APPLICATION**

- -TFT LCD Monitor
- Factory Application
- Amusement

#### **1.4 GENERAL SPECIFICATIONS**

| Item                     | Specification                        | Unit  | Note |
|--------------------------|--------------------------------------|-------|------|
| Active Area              | 115.2 (H) x 86.4 (V) (5.7" diagonal) | mm    | (1)  |
| Driver Element           | a-Si TFT active matrix               | -     | -    |
| Pixel Number             | 640 x R.G.B x 480                    | pixel | -    |
| Pixel Pitch              | 0.18(H) x 0.18(W)                    | mm    | -    |
| Pixel Arrangement        | RGB vertical Stripe                  | -     | -    |
| Display Colors           | 262K                                 | color | -    |
| Display Mode             | Normally Black                       | -     | -    |
| Surface Treatment        | Hard Coating (3H), Anti-Glare        | -     | -    |
| Module Power Consumption | 2.818 ( Panel 0.518+BL 2.3)          | W     | Тур. |

#### **1.5 MECHANICAL SPECIFICATIONS**

INNOLUX

群創光電

| lte         | em            | Min.  | Тур.  | Max.  | Unit | Note |
|-------------|---------------|-------|-------|-------|------|------|
|             | Horizontal(H) | 143.5 | 144   | 144.5 | mm   |      |
| Module Size | Vertical(V)   | 104.1 | 104.6 | 105.1 | mm   | (1)  |
|             | Depth(D)      | 11.8  | 12.3  | 12.8  | mm   |      |
| Bezel Area  | Horizontal    | 117.6 | 118.2 | 118.4 | mm   | -    |
| Bezel Alea  | Vertical      | 88.8  | 89.4  | 89.6  | mm   |      |
| Active Area | Horizontal    | -     | 115.2 | -     | mm   |      |
| Active Area | Vertical      | -     | 86.4  | -     | mm   |      |
| We          | ight          | 143   | 151   | 159   | g    |      |

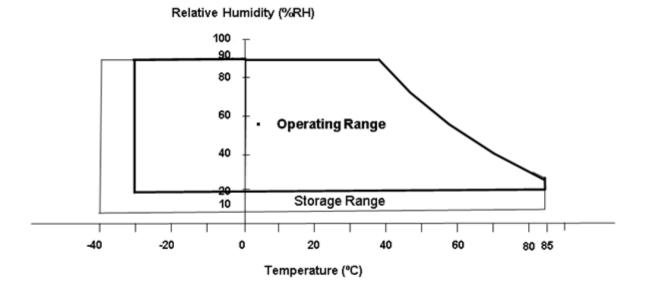
Note (1)Please refer to the attached drawings for more information of front and back outline dimensions.



#### 2. ABSOLUTE MAXIMUM RATINGS

#### 2.1 ABSOLUTE RATINGS OF ENVIRONMENT

| ltom                          | Sumbol          | Va   | lue  | Linit | Note   |
|-------------------------------|-----------------|------|------|-------|--------|
| Item                          | Symbol          | Min. | Max. | Unit  | Note   |
| Operating Ambient Temperature | T <sub>OP</sub> | -30  | +85  | °C    | (1)(2) |
| Storage Temperature           | T <sub>ST</sub> | -40  | +85  | °C    | (1)(2) |


Note (1)

(a) 90 %RH Max.

(b) Wet-bulb temperature should be 39 °C Max.

(c) No condensation.

Note (2) Panel surface temperature should be 0°C min. and 85°C max under Vcc=3.3V, fr =60Hz, typical LED string current, 25°C ambient temperature, and no humidity control. Any condition of ambient operating temperature ,the surface of active area should be keeping not higher than 85°C.





#### 2.2 ELECTRICAL ABSOLUTE RATINGS

#### 2.2.1 TFT LCD MODULE

| Item                 | Symbol | Value |      | Unit  | Note |  |
|----------------------|--------|-------|------|-------|------|--|
| nem                  | Symbol | Min.  | Max. | Offic | Note |  |
| Power Supply Voltage | VCC    | -0.3  | 4    | V     | (1)  |  |
| Logic Input Voltage  | Vin    | -0.3  | 4    | V     | (1)  |  |

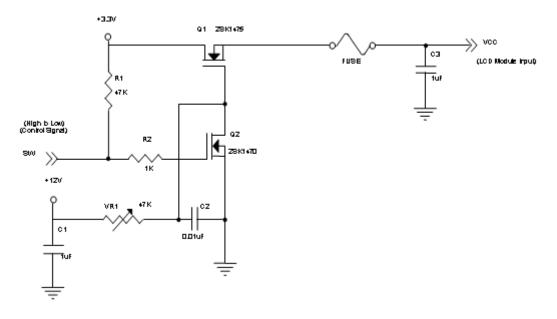
#### 2.2.2 BACKLIGHT UNIT

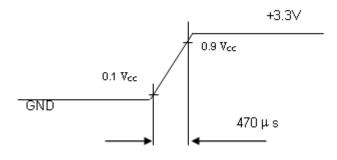
| ltom              | Sumbol           | Va   | lue       | Unit | Note      |  |
|-------------------|------------------|------|-----------|------|-----------|--|
| Item              | Symbol Min. Max. |      | Min. Max. |      | NOLE      |  |
| Converter Voltage | Vi               | -0.3 | 18        | V    | (1) , (2) |  |
| Enable Voltage    | EN               |      | 5.5       | V    |           |  |
| Backlight Adjust  | Dimming          |      | 5.5       | V    |           |  |

Note (1) Permanent damage to the device may occur if maximum values are exceeded. Function operation should be restricted to the conditions described under Normal Operating Conditions.

Note (2) Specified values are for LED (Refer to 3.2 for further information).




#### **3. ELECTRICAL CHARACTERISTICS**


#### 3.1 TFT LCD MODULE

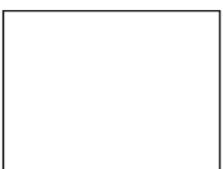
| Parameter                |                 | Sumbol  |        | Value | Unit   | Note |      |
|--------------------------|-----------------|---------|--------|-------|--------|------|------|
|                          |                 | Symbol  | Min.   | Тур.  | Max.   | Unit | note |
| Power Supply Vo          | Itage           | Vcc     | 3.0    | 3.3   | 3.6    | V    | -    |
| Ripple Voltag            | V <sub>RP</sub> | -       | -      | 100   | mVp-p  |      |      |
| Inrush Current           |                 | IINRUSH | -      | -     | 2.0    | А    | (2)  |
| Dowor Supply Current     | White           | lcc     | -      | 157   | 187    | mA   | (3)a |
| Power Supply Current     | Black           |         | -      | 106   | 125    | mA   | (3)b |
| Power Consumption        |                 | PL      | -      | 0.518 | 0.617  | W    |      |
| Logic High Input Voltage |                 | VIH     | 0.7Vcc |       | Vcc    | V    |      |
| Logic Low Input V        | oltage          | VIL     | GND    |       | 0.3Vcc | V    |      |

Note (1)The module should be always operated within above ranges.

Note (2)Measurement Conditions:








Note (3) The specified power supply current is under the conditions at V\_DD =3.3V, Ta = 25  $\pm$  2  $^\circ\!\mathrm{C}$  , DC Current

and  $f_v$  = 60 Hz, whereas a power dissipation check pattern below is displayed.

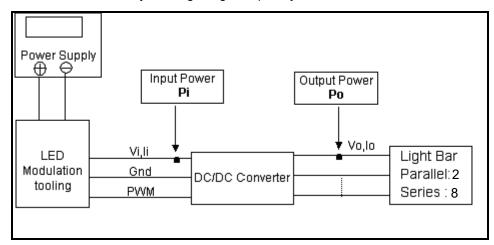
a. White Pattern

b. Black Pattern



Active Area

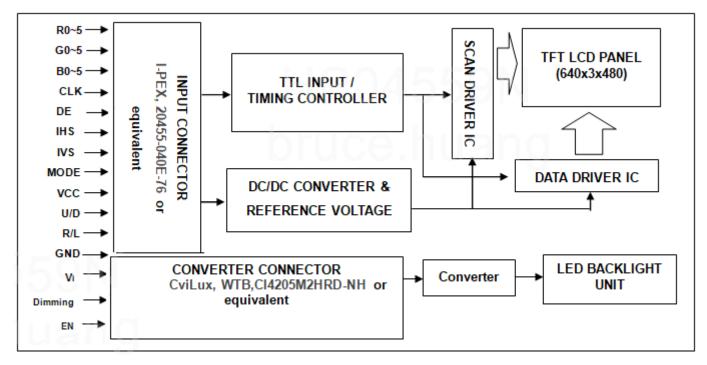



Active Area

### INNOLUX 群創光電 3.2 BACKLIGHT UNIT

# PRODUCT SPECIFICATION

| Denem                          | - 4 - 11       | Oursels al         | Value  |      |      | Unit | Nista                                      |  |
|--------------------------------|----------------|--------------------|--------|------|------|------|--------------------------------------------|--|
| Param                          | eter           | Symbol             | Min.   | Тур. | Max. | Unit | Note                                       |  |
| Converter In                   | out Voltage    | Vi                 | 10.8   | 12.0 | 13.2 | VDC  | (Duty 100%)                                |  |
| Converter Input                | Ripple Voltage | Virp               | -      | -    | 500  | mV   |                                            |  |
| Converter In                   | out Current    | li                 | 0.16   | 0.19 | 0.22 | Add  | @ Vi = 12V<br>(Duty 100%)                  |  |
| Converter Inr                  | ush Current    | l <sub>Irush</sub> | -      | -    | 3.0  | А    | <pre>@ Vi rising time=10ms (Vi=12V)</pre>  |  |
| Input Power C                  | onsumption     | Pi                 | -      | 2.3  |      | W    | (1)                                        |  |
| EN Control Level               | Backlight on   | ENLED              | 2.0    | 3.3  | 5.0  | V    |                                            |  |
| EN CONTO Lever                 | Backlight off  | (BLON)             | 0      | -    | 0.3  | V    |                                            |  |
| PWM Control Level              | PWM High Level | Dimming            | 2.0    | -    | 5.0  | V    |                                            |  |
|                                | PWM Low Level  | (E_PWM)            | 0      | -    | 0.15 | V    |                                            |  |
| PWN Nois                       | e Range        | VNoise             | -      | -    | 0.1  | V    |                                            |  |
| PWM Control                    | Frequency      | f <sub>PWM</sub>   | 190    | 200  | 20k  | Hz   | (2)                                        |  |
|                                |                |                    | 5      | -    | 100  | %    | (2), @<br>190Hz <f<sub>PWM&lt;1kHz</f<sub> |  |
| PWM Dimming Control Duty Ratio |                | -                  | 20     | -    | 100  | %    | (2), @<br>1kHz≦<br>f <sub>PWM</sub> <20kHz |  |
| LED Life                       | e Time         | LLED               | 50,000 |      | -    | Hrs  | (3)                                        |  |


Note (1)LED current is measured by utilizing a high frequency current meter as shown below:



- Note (2) The lifetime of LED is estimated data and defined as the time when it continues to operate under the conditions at Ta = 25  $\pm$ 2 °C and Duty 100% until the brightness becomes  $\leq$  50% of its original value.Operating LED at high temperature condition will reduce life time and lead to color shift.
- Note (3) At 190 ~1kHz PWM control frequency, duty ratio range is restricted from 5% to 100%.1K ~20kHz PWM control frequency, duty ratio range is restricted from 20% to 100%. If PWM control frequency is applied in the range from 1KHz to 20KHZ, The "non-linear" phenomenon on the Backlight Unit may be found. So It's a suggestion that PWM control frequency should be less than 1KHz.



4.1 TFT LCD MODULE

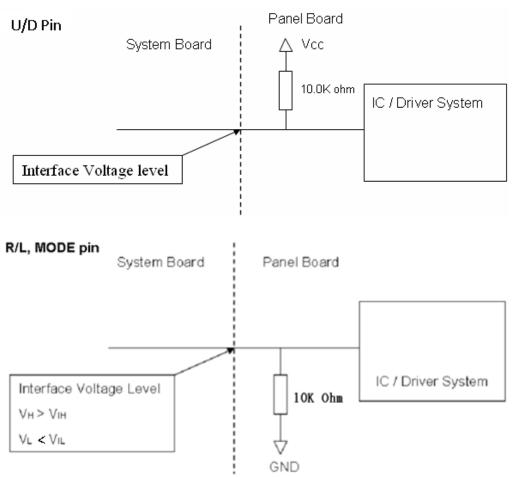




#### 5. INPUT TERMINAL PIN ASSIGNMENT

#### 5.1 TFT LCD MODULE

| Pin No. | Symbol | Function                                  | Note              |
|---------|--------|-------------------------------------------|-------------------|
| 1       | GND    | Ground                                    |                   |
| 2       | CLK    | Dot Clock. Latch data at the rising edge. |                   |
| 3       | IHS    | Horizontal synchronous signal             |                   |
| 4       | IVS    | Vertical synchronous signal               |                   |
| 5       | GND    | Ground                                    |                   |
| 6       | R5     | Red data (MSB)                            |                   |
| 7       | R4     | Red data                                  |                   |
| 8       | R3     | Red data                                  |                   |
| 9       | R2     | Red data                                  |                   |
| 10      | R1     | Red data                                  |                   |
| 11      | R0     | Red data (LSB)                            |                   |
| 12      | GND    | Ground                                    |                   |
| 13      | G5     | Green data (MSB)                          |                   |
| 14      | G4     | Green data                                |                   |
| 15      | G3     | Green data                                |                   |
| 16      | G2     | Green data                                |                   |
| 17      | G1     | Green data                                |                   |
| 18      | G0     | Green data (LSB)                          |                   |
| 19      | GND    | Ground                                    |                   |
| 20      | B5     | Blue data (MSB)                           | Note (3)          |
| 21      | B4     | Blue data                                 |                   |
| 22      | B3     | Blue data                                 |                   |
| 23      | B2     | Blue data                                 |                   |
| 24      | B1     | Blue data                                 |                   |
| 25      | B0     | Blue data (LSB)                           |                   |
| 26      | GND    | Ground                                    |                   |
| 27      | DE     | Data Enable Signal                        |                   |
| 28      | NC     | No Connection                             | Note (3)          |
| 29      | NC     | No Connection                             | Note (3)          |
| 20      |        | Horizontal Reverse Scan Control,          | Note (3)          |
| 30      | R/L    | Low or NC $\rightarrow$ Normal Mode.      |                   |
|         |        | High → Horizontal Reverse Scan            |                   |
|         |        | Vertical Reverse Scan Control,            |                   |
| 31      | U/D    | High or NC $\rightarrow$ Normal Mode      | Note (3)          |
|         |        | $Low \rightarrow Vertical Reverse Scan$   |                   |
| 32      | NC     | No Connection                             | Note (3) Note (4) |
| 33      | NC     | No Connection                             | Note (3) Note (4) |
| 34      | NC     | No Connection                             | Note (3) Note (4) |
|         |        | DE / SYNC mode select.                    |                   |
| 35      | MODE   | High $\rightarrow$ SYNC mode.             | Note (3)          |
|         |        | Low or NC $\rightarrow$ DE mode.          |                   |
| 36      | NC     | No Connection                             | Note (3) Note (4) |
| 37      | NC     | No Connection                             | Note (3)          |
| 38      | VCC    | Power supply: +3.3V                       |                   |
| 39      | VCC    | Power supply: +3.3V                       |                   |
| 40      | VCC    | Power supply: +3.3V                       |                   |


Note (1) Connector Part No.: 20455-040E-76(I-PEX) or equivalent.

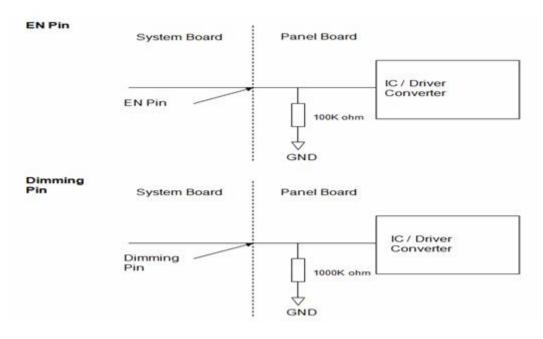
Note (2) User's connector Part No.: 20453-040T-03(I-PEX) or equivalent.

Note (3) "Low" stands for 0V. "High" stands for 3.3V. "NC" stands for "No Connection".

Note (4) Pin32, Pin33, Pin34, Pin36 input signals should be set to no connection or ground, this module would operate normally.








#### **5.2 BACKLIGHT UNIT(CONVERTER CONNECTOR PIN)**

| Pin | Symbol  | Description             | Remark                                                          |
|-----|---------|-------------------------|-----------------------------------------------------------------|
| 1   | NC      | Not Connect             |                                                                 |
| 2   | Dimming | Backlight Adjust        | PWM Dimming<br>(Hi: 3.3V <sub>DC</sub> , Lo: 0V <sub>DC</sub> ) |
| 3   | EN      | Enable pin              | 3.3V                                                            |
| 4   |         | Converter ground        | Ground                                                          |
| 5   | Vi      | Converter input voltage | 12V                                                             |

Note (1)Connector Part No.: CI4205M2HRD-NH (Cvilux) or equivalent.

Note (2)User's connector Part No.: 9827H-04-N0HF(SWB) or equivalent.





#### **5.3 COLOR DATA INPUT ASSIGNMENT**

The brightness of each primary color (red, green and blue) is based on the 6-bit gray scale data input for the color. The higher the binary input the brighter the color. The table below provides the assignment of color versus data input.

|             |                      |        |        |        |        |    |        |        | D      | )ata \$ | Signa  | al     |        |        |        |        |        |        |        |
|-------------|----------------------|--------|--------|--------|--------|----|--------|--------|--------|---------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
|             | Color                |        |        | Re     | ed     |    |        |        |        | Gre     |        |        |        |        |        | Bl     | ue     |        |        |
|             |                      | R5     | R4     | R3     | R2     | R1 | R0     | G5     | G4     | G3      | G2     | G1     | G0     | B5     | B4     | B3     | B2     | B1     | B0     |
|             | Black                | 0      | 0      | 0      | 0      | 0  | 0      | 0      | 0      | 0       | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
|             | Red                  | 1      | 1      | 1      | 1      | 1  | 1      | 0      | 0      | 0       | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
|             | Green                | 0      | 0      | 0      | 0      | 0  | 0      | 1      | 1      | 1       | 1      | 1      | 1      | 0      | 0      | 0      | 0      | 0      | 0      |
| Basic       | Blue                 | 0      | 0      | 0      | 0      | 0  | 0      | 0      | 0      | 0       | 0      | 0      | 0      | 1      | 1      | 1      | 1      | 1      | 1      |
| Colors      | Cyan                 | 0      | 0      | 0      | 0      | 0  | 0      | 1      | 1      | 1       | 1      | 1      | 1      | 1      | 1      | 1      | 1      | 1      | 1      |
|             | Magenta              | 1      | 1      | 1      | 1      | 1  | 1      | 0      | 0      | 0       | 0      | 0      | 0      | 1      | 1      | 1      | 1      | 1      | 1      |
|             | Yellow               | 1      | 1      | 1      | 1      | 1  | 1      | 1      | 1      | 1       | 1      | 1      | 1      | 0      | 0      | 0      | 0      | 0      | 0      |
|             | White                | 1      | 1      | 1      | 1      | 1  | 1      | 1      | 1      | 1       | 1      | 1      | 1      | 1      | 1      | 1      | 1      | 1      | 1      |
|             | Red(0)/Dark          | 0      | 0      | 0      | 0      | 0  | 0      | 0      | 0      | 0       | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
| _           | Red(1)               | 0      | 0      | 0      | 0      | 0  | 1      | 0      | 0      | 0       | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
| Gray        | Red(2)               | 0      | 0      | 0      | 0      | 1  | 0      | 0      | 0      | 0       | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
| Scale       | :                    | :      | :      | :      | :      | :  | :      | :      | :      | :       | :      | :      | :      | :      | :      | :      | :      | :      | :      |
| Of          | :                    | :      | :      | :      | :      | :  | :      | :      | :      | :       | :      | :      | :      | :      | :      | :      | :      | :      | :      |
| Red         | Red(61)              | 1      | 1      | 1      | 1      | 0  | 1      | 0      | 0      | 0       | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
|             | Red(62)              | 1      | 1      | 1      | 1      | 1  | 0      | 0      | 0      | 0       | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
|             | Red(63)              | 1      | 1      | 1      | 1      | 1  | 1      | 0      | 0      | 0       | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
|             | Green(0)/Dark        | 0      | 0      | 0      | 0      | 0  | 0      | 0      | 0      | 0       | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
| ~           | Green(1)             | 0      | 0      | 0      | 0      | 0  | 0      | 0      | 0      | 0       | 0      | 0      | 1      | 0      | 0      | 0      | 0      | 0      | 0      |
| Gray        | Green(2)             | 0      | 0      | 0      | 0      | 0  | 0      | 0      | 0      | 0       | 0      | 1      | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
| Scale       |                      | :      | :      | :      | :      |    | -      | :      | :      | :       | :      | :      | :      | :      | :      | ÷      | :      | :      | :      |
| Of          | :                    | :      | :      | :      | :      | •  | -      | :      | :      | •       | :      | -      | •      | •      | :      | :      | :      | •      | •      |
| Green       | Green(61)            | 0      | 0      | 0      | 0      | 0  | 0      | 1      | 1      | 1       | 1      | 0      | 1      | 0      | 0      | 0      | 0      | 0      | 0      |
|             | Green(62)            | 0<br>0 | 0      | 0      | 0<br>0 | 0  | 0<br>0 | 1<br>1 | 1<br>1 | 1       | 1<br>1 | 1      | 0<br>1 | 0<br>0 | 0      | 0      | 0<br>0 | 0      | 0<br>0 |
|             | Green(63)            | -      | 0      | 0      |        | 0  |        | •      | •      | 1       |        | 1      |        | -      | 0      | 0      |        | 0      |        |
|             | Blue(0)/Dark         | 0      | 0      | 0      | 0      | 0  | 0      | 0      | 0      | 0       | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
| Cray        | Blue(1)              | 0      | 0<br>0 | 0<br>0 | 0<br>0 | 0  | 0<br>0 | 0<br>0 | 0<br>0 | 0<br>0  | 0<br>0 | 0      | 0<br>0 | 0<br>0 | 0<br>0 | 0<br>0 | 0<br>0 | 0      | 1<br>0 |
| Gray        | Blue(2)              | 0      | 0      | 0      | 0      | 0  | 0      |        | 0      | 0       | 0      | 0      |        | 0      | 0      | 0      |        |        | 0      |
| Scale<br>Of |                      | :      | :      | :      | :      |    | :      | •      | :      | :       | :      | :      | :      | :      | :      | :      | :      | :      | :      |
| Blue        | Blue(61)             |        |        | •      | •      | -  | •      | 0      |        | •       |        | -      | :<br>0 | 1      | 1      | •      | 1      |        | •      |
| Blue        | Blue(61)<br>Blue(62) | 0<br>0 | 0      | 0      | 0<br>0 | 0  | 0<br>0 | 0      | 0      | 0<br>0  | 0<br>0 | 0<br>0 | 0      | 1      | 1      | 1      | 1      | 0<br>1 | 1<br>0 |
|             | ``'                  | 0      | 0<br>0 | 0<br>0 | 0      | 0  | 0      | 0      | 0<br>0 | 0       | 0      | 0      | 0      | 1      | 1      |        | 1      | 1      | 0      |
|             | Blue(63)             | U      | U      | U      | U      | U  | U      | U      | U      | U       | U      | U      | U      | I      | I      | I      | I      | I      |        |

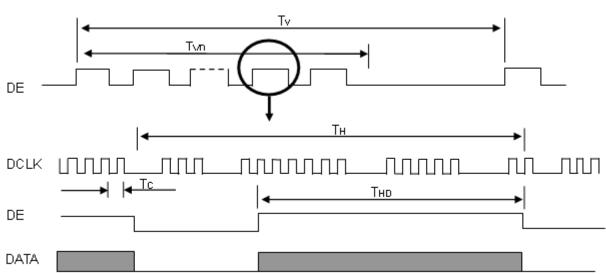
Note (1)0: Low Level Voltage, 1: High Level Voltage



#### 6. INTERFACE TIMING

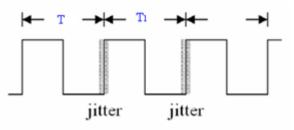
#### 6.1 DE MODE INPUT SIGNAL TIMING SPECIFICATIONS

The input signal timing specifications are shown as the following table and timing diagram.

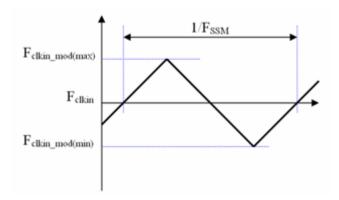

| Signal                     | Item                                    | Symbol           | Min.    | Тур.  | Max.                | Unit | Note                    |
|----------------------------|-----------------------------------------|------------------|---------|-------|---------------------|------|-------------------------|
|                            | Frequency                               | Fr               | 23.9    | 25.2  | 29.8                | MHz  | -                       |
|                            | Period                                  | Tc               | 33.56   | 39.71 | 41.84               | ns   |                         |
| DCLK                       | Input cycle to<br>cycle jitter          | T <sub>rcl</sub> |         |       | 200                 | ns   | (a)                     |
|                            | Spread spectrum<br>modulation range     | Fclkin_mod       | 0.98*Fc | -     | 1.02*F <sub>c</sub> | MHz  | (b)                     |
|                            | Spread spectrum<br>modulation frequency | Fssм             | -       | -     | 200                 | KHz  | (6)                     |
|                            | Frame Rate                              | Fr               |         | 60    |                     | Hz   | $Tv=T_{vd}+T_{vb}$      |
| Vertical Display           | Total                                   | Τv               | 515     | 525   | 611                 | Th   | -                       |
| Term                       | Active Display                          | T <sub>vd</sub>  | 480     | 480   | 480                 | Th   | -                       |
|                            | Blank                                   | T <sub>vb</sub>  | 35      | 45    | 131                 | Th   | -                       |
|                            | Total                                   | Th               | 750     | 800   | 814                 | Tc   | $T_h = T_{hd} + T_{hb}$ |
| Horizontal Display<br>Term | Active Display                          | T <sub>hd</sub>  | 640     | 640   | 640                 | Tc   | -                       |
| Torini                     | Blank                                   | T <sub>hb</sub>  | 110     | 160   | 174                 | Tc   | -                       |

Note (1) Because this module is operated by DE only mode, Hsync and Vsync input signals should be set to

low logic level or ground. Otherwise, this module would operate abnormally.


Note (2) The Tv(Tvd+Tvb) must be integer, otherwise, the module would operate abnormally.

#### **INPUT SIGNAL TIMING DIAGRAM**



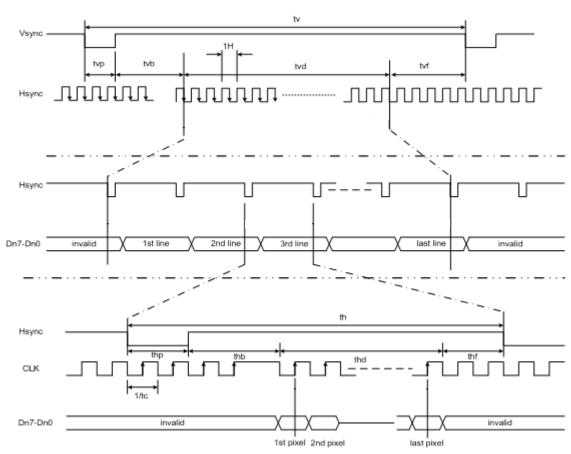



Note (a) The input clock cycle-to-cycle jitter is defined as below figures.  $T_{rcl} = I T1 - TI$ 



Note (b) The SSCG (Spread spectrum clock generator) is defined as below figures.






#### 6.2 SYNC MODE INPUT SIGNAL TIMING SPECIFICATIONS

The input signal timing specifications are shown as the following table and timing diagram.

| Signal                         | Item           | Symbol | Min. | Тур. | Max. | Unit | Note |
|--------------------------------|----------------|--------|------|------|------|------|------|
| DCLK                           | Frequency      | Тс     | 23.9 | 25.2 | 29.8 | MHz  |      |
|                                | Total          | Τv     | 515  | 525  | 611  | Th   |      |
|                                | Display        | Tvd    | -    | 480  | -    | Th   |      |
| Vertical Active Display Term   | Front Porch    | Tvf    | 3    | 10   | 126  | Th   |      |
|                                | Back Porch     | Tvb    | -    | 33   | -    | Th   |      |
|                                | VS Pluse width | Тvр    | 1    | 2    | 4    | Th   |      |
|                                | Total          | Th     | 750  | 800  | 814  | Tc   |      |
|                                | Display        | Thd    | -    | 640  | -    | Tc   |      |
| Horizontal Active Display Term | Front Porch    | Thf    | 28   | 126  | 142  | Tc   |      |
|                                | Back Porch     | Thb    | -    | 32   | -    | Tc   |      |
|                                | HS Pluse width | Thp    | 1    | 2    | 31   | Tc   |      |

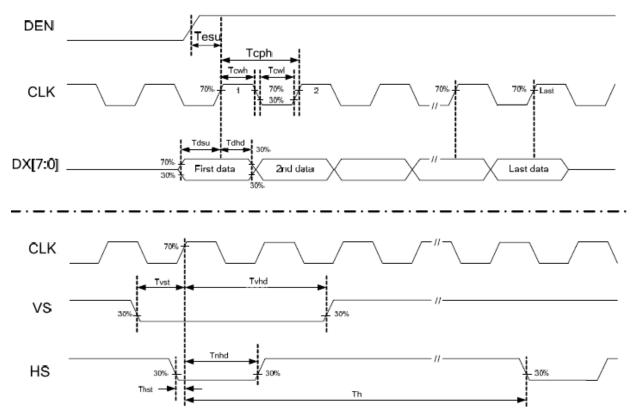
Note (1) The Tv(Tvd+Tvb+Tvf+Tvp) must be integer, otherwise, the module would operate abnormally



#### **INPUT SIGNAL TIMING DIAGRAM**

Version 2.1

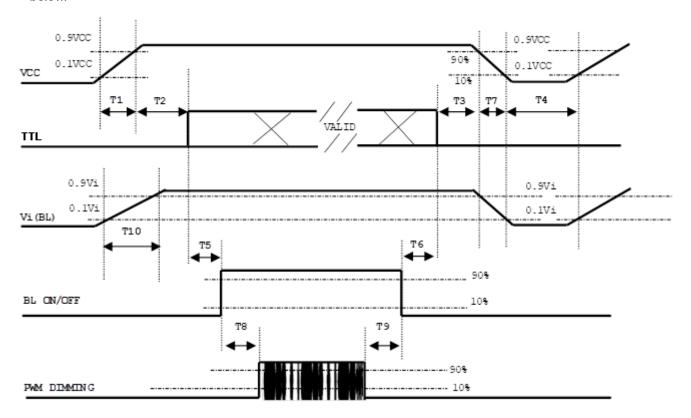
#### **6.3 AC ELECTRICAL CHARACTERISTICS**


**INNOLUX** 

群創光電

| Parameter       | Symbol |      | Value |      | Unit | Condition |
|-----------------|--------|------|-------|------|------|-----------|
| Farameter       | Symbol | Min. | Тур.  | Max. | Unit | Condition |
| Data setup time | Tdsu   | 10   | -     | -    | ns   | Note (1)  |
| Data hold time  | Tdhd   | 10   | -     | -    | ns   | Note (1)  |
| DE setup time   | Tesu   | 10   | -     | -    | ns   |           |
| HS setup time   | Thst   | 10   | -     | -    | ns   |           |
| HS hold time    | Thhd   | 10   | -     | -    | ns   |           |
| VS setup time   | Tvst   | 10   | -     | -    | ns   |           |
| VS hold time    | Tvhd   | 10   | -     | -    | ns   |           |

Note (1) CLK latching data at the rising edge.


#### Clock and Data input waveform





#### 6.4 POWER ON/OFF SEQUENCE

To prevent a latch-up or DC operation of LCD assembly, the power on/off sequence should be as the diagram below.



| Deremeter |         | Value |     | Units |
|-----------|---------|-------|-----|-------|
| Parameter | Min Typ |       | Max | Units |
| T1        | 0.5     | -     | 10  | ms    |
| T2        | 0       | -     | 50  | ms    |
| Т3        | 0       | -     | 50  | ms    |
| T4        | 500     | -     | -   | ms    |
| T5        | 450     | -     | -   | ms    |
| Т6        | 200     | -     | -   | ms    |
| T7        | 10      | -     | 100 | ms    |
| Т8        | 10      | -     | -   | ms    |
| Т9        | 10      | -     | -   | ms    |
| T10       | 20      | -     | 50  | ms    |



- Note(1) The supply voltage of the external system for the module input should be the same as the definition of Vcc.
- Note(2) When the backlight turns on before the LCD operation of the LCD turns off, the display may momentarily become abnormal screen.
- Note(3) In case of VCC = off level, please keep the level of input signals on the low or keep a high impedance.
- Note(4) T4 should be measured after the module has been fully discharged between power off and on period.
- Note(5) Interface signal shall not be kept at high impedance when the power is on.
- Note(6) INX won't take any responsibility for the products which are damaged by the customers not following the Power Sequence.
- Note(7) There might be slight electronic noise when LCD is turned off (even backlight unit is also off). To avoid this symptom, we suggest "Vcc falling timing" to follow "T7 spec

# INNOLUX 群創光電

#### 6.5 SCANNING DIRECTION

The following figures show the image see from the front view. The arrow indicates the direction of scan.

#### Fig.1 Normal Scan



Fig.3 Reverse Scan



Fig.2 Reverse Scan



Fig.4 Reverse Scan



PCBA on the top side

PCBA on the top side

Fig. 1 Normal scan (pin 30,R/L=Low or NC, pin 31,U/D = High or NC)

Fig. 2 Reverse scan (pin 30,R/L=High, pin 31,U/D = High or NC )

- Fig. 3 Reverse scan (pin 30,R/L=Low or NC, pin 31,U/D = Low )
- Fig. 4 Reverse scan (pin 30,R/L=High, pin 31,U/D = Low )



#### 7. OPTICAL CHARACTERISTICS

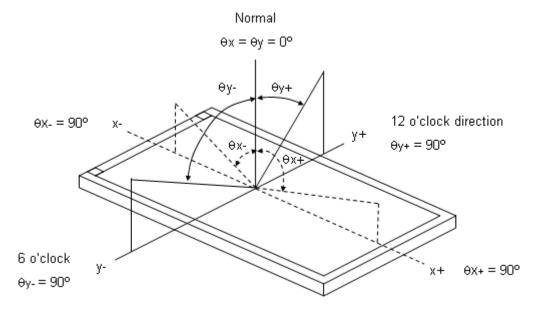
#### 7.1 TEST CONDITIONS

| Item                | Symbol                       | Value                       | Unit      |  |
|---------------------|------------------------------|-----------------------------|-----------|--|
| Ambient Temperature | Та                           | 25±2                        | оС        |  |
| Ambient Humidity    | На                           | 50±10                       | %RH       |  |
| Supply Voltage      | Accordin                     | g to typical value and tole | erance in |  |
| Input Signal        | "ELECTRICAL CHARACTERISTICS" |                             |           |  |
| PWM Duty Ratio      | D                            | 100                         | %         |  |

#### 7.2 OPTICAL SPECIFICATIONS

The relative measurement methods of optical characteristics are shown here and all items are measured at the center point of screen unless otherwise noted. The following items should be measured under the test conditions described above and stable conditions shown in Note (5).

| Iter          | n            | Symbol       | Condition                      | Min.  | Тур.  | Max.  | Unit | Note     |
|---------------|--------------|--------------|--------------------------------|-------|-------|-------|------|----------|
|               | Red          | Rx           |                                | 0.597 | 0.647 | 0.697 |      |          |
|               | Reu          | Ry           |                                | 0.290 | 0.340 | 0.390 |      |          |
|               | Green        | Gx           |                                | 0.270 | 0.320 | 0.370 |      |          |
| Color         | Green        | Gy           |                                | 0.553 | 0.603 | 0.653 |      | (1), (5) |
| Chromaticity  | Blue         | Bx           | θ <b>X=0°</b> , θ <b>Y =0°</b> | 0.102 | 0.152 | 0.202 | -    | (1), (3) |
|               | Dide         | Ву           | Grayscale Maximum              | 0.000 | 0.050 | 0.100 |      |          |
|               | White        | Wx           |                                | 0.263 | 0.313 | 0.363 |      |          |
|               | VVIIILE      | Wy           |                                | 0.279 | 0.329 | 0.379 |      |          |
| Center Lumina | nce of White | LC           |                                | 360   | 450   |       |      | (4), (5) |
| Contrast      | Ratio        | CR           |                                | 700   | 1000  |       |      | (2), (5) |
| Respons       | e Time       | TR           | θ <b>X=0°</b> , θ <b>Y</b> =0° | -     | 13    | 18    | -    | (3)      |
| Пезропз       | e nine       | TF           | 0 <b>∧=</b> 0,01=0             | -     | 12    | 17    | -    | (3)      |
| White Va      | riation      | δW           | θ <b>X=0°</b> , θ <b>Y =0°</b> | 72    | 80    | -     | %    | (5), (6) |
|               | Horizontal   | θX+          |                                | 80    | 89    | -     |      |          |
| Viewing Angle | TIONZONIA    | θΧ-          | CR≧10                          | 80    | 89    | -     | Deg. | (1), (5) |
|               | Vertical     | θ <b>Y</b> + |                                | 80    | 89    | -     | Dey. | (1), (3) |
|               | vertical     | θΥ-          |                                | 80    | 89    | -     |      |          |

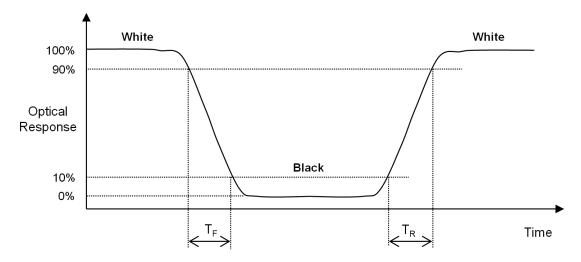

Definition :

Grayscale Maximum : Grayscale 255 (10 bits: grayscale 1023 ; 8 bits : grayscale 255 ; 6 bits: grayscale 63) White : Luminance of Grayscale Maximum (All R,G,B)

Black : Luminance of grayscale 0 (All R,G,B)



Note (1)Definition of Viewing Angle ( $\theta x, \theta y$ ):



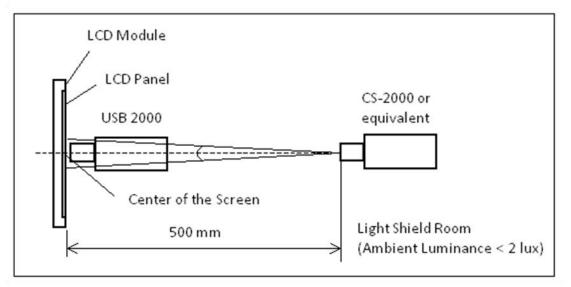

Note (2)Definition of Contrast Ratio (CR):

The contrast ratio can be calculated by the following expression at center point.

Contrast Ratio (CR) = White / Black

Note (3)Definition of Response Time (T<sub>R</sub>, T<sub>F</sub>):

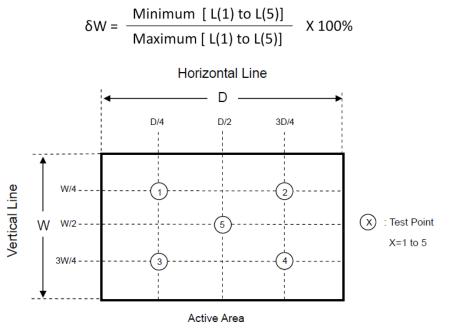





Note (4) Definition of Luminance of White (L<sub>c</sub>):

Measure the luminance of White at center point.

Note (5) Measurement Setup:


The LCD module should be stabilized at given temperature to avoid abrupt temperature change during measuring. In order to stabilize the luminance, the measurement should be executed after lighting Backlight for 40 minutes in a windless room. The measurement placement of module should be in accordance with module drawing.



Note (6) Definition of White Variation ( $\delta W$ ):

Measure the luminance of White at 5 points.

Luminance of White : L(X) , where X is from 1 to 5.

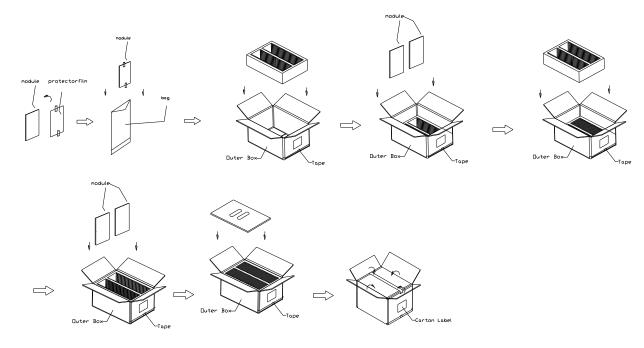




#### 8. RELIABILITY TEST CRITERIA

| Test Item                                          | Test Condition                                                              | Note               |
|----------------------------------------------------|-----------------------------------------------------------------------------|--------------------|
| High Temperature Storage Test                      | $85^\circ C$ , 240 hours                                                    |                    |
| Low Temperature Storage Test                       | -40°C , 240 hours                                                           |                    |
| Thermal Shock Storage Test                         | -30°C, 0.5 hour $\leftrightarrow$ 70°C, 0.5 hour; 100cycles, 1 hour/cycle)  | (1),(2)            |
| High Temperature Operation Test                    | $85^\circ C$ , 240 hours                                                    | (1),(2)<br>(4),(5) |
| Low Temperature Operation Test                     | -30°C , 240 hours                                                           | ( )/( )            |
| High Temperature & High Humidity<br>Operation Test | 60℃, RH 90%, 240 hours                                                      |                    |
|                                                    | 150pF, 330 Ω, 1 sec/cycle                                                   |                    |
| ESD Test (Operation)                               | Condition 1 : panel contact, $\pm 8$ KV                                     | (1), (4)           |
|                                                    | Condition 2 : panel non-contact $\pm 15$ KV                                 |                    |
| Shock (Non-Operating)                              | 50G, 11ms, half sine wave, 1 time for $\pm X$ , $\pm Y$ , $\pm Z$ direction |                    |
| Vibration (Non-Operating)                          | 1.5G, 10 ~ 300 Hz sine wave, 10 min/cycle, 3 cycles each X, Y, Z direction  | (2), (3)           |

Note (1) There should be no condensation on the surface of panel during test,


- Note (2) Temperature of panel display surface area should be 85°C Max.
- Note (3) At testing Vibration and Shock, the fixture in holding the module has to be hard and rigid enough so that the module would not be twisted or bent by the fixture.
- Note (4) In the standard conditions, there is no function failure issue occurred. All the cosmetic specification is judged before reliability test.
- Note (5) Before cosmetic and function test, the product must have enough recovery time, at least 24 hours at room temperature.



#### 9.1 PACKING SPECIFICATIONS

- (1) 60pcs LCD modules / 1 Box
- (2) Box dimensions: 500 (L) X 400 (W) X 330 (H) mm
- (3) Weight: approximately 11.65Kg (60 modules per box)

#### 9.2 PACKING METHOD





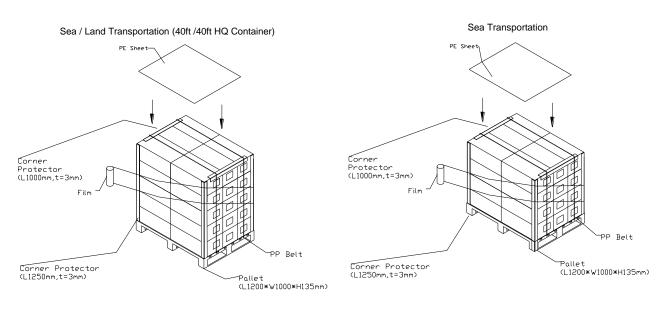



Figure. 9-2 Packing



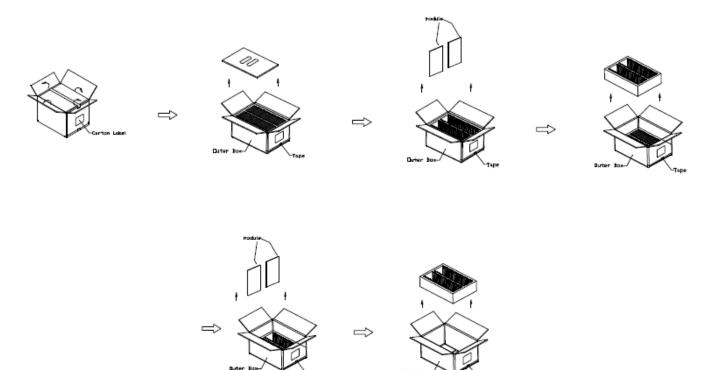
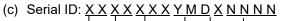


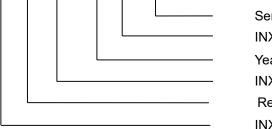

Figure. 9-3 Un-packing method



### INNOLUX 群創光電

#### **10. DEFINITION OF LABELS**


#### **10.1 INX MODULE LABEL**


The barcode nameplate is pasted on each module as illustration, and its definitions are as following explanation.



Note (1) Safety Compliance(UL logo) will open after C1 version.

- (a) Model Name: G057VCE-TH1
- (b) \* \* \* \* : Factory ID





Serial INX Internal Use Year, Month, Date INX Internal Use Revision INX Internal Use

Serial ID includes the information as below:

(a) Manufactured Date: Year: 1~9, for 2021~2029

Month: 1~9, A~C, for Jan. ~ Dec.

Day: 1~9, A~Y, for 1<sup>st</sup> to 31<sup>st</sup>, exclude I, O and U

- (b) Revision Code: cover all the change
- (c) Serial No.: Manufacturing sequence of product



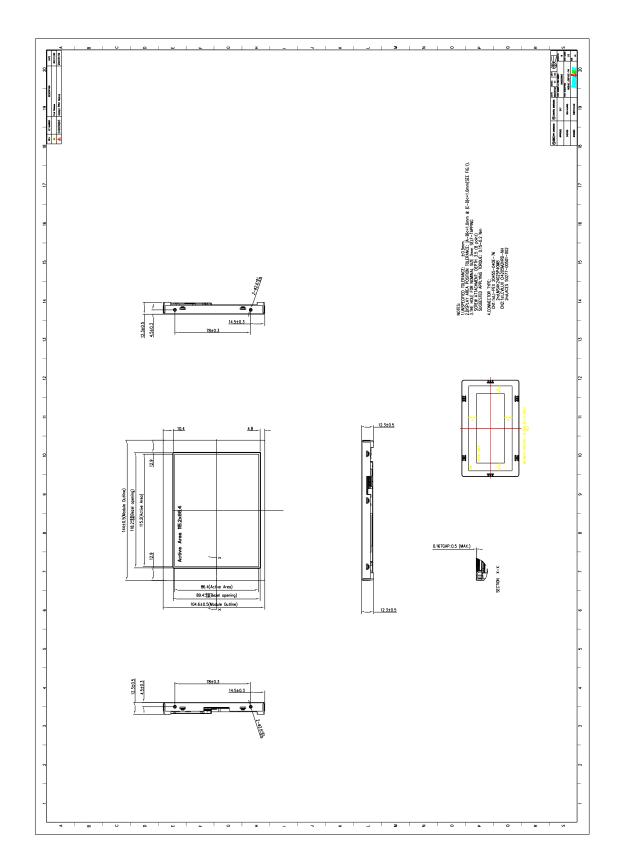
#### **11.1 ASSEMBLY AND HANDLING PRECAUTIONS**

- (1)The module should be assembled into the system firmly by using every mounting hole. Be careful not to twist or bend the module.
- (2)While assembling or installing modules, it can only be in the clean area. The dust and oil may cause electrical short or damage the polarizer.
- (3)Use fingerstalls or soft gloves in order to keep display clean during the incoming inspection and assembly process.
- (4)Do not press or scratch the surface harder than a HB pencil lead on the panel because the polarizer is very soft and easily scratched.
- (5)If the surface of the polarizer is dirty, please clean it by some absorbent cotton or soft cloth. Do not use Ketone type materials (ex. Acetone), Ethyl alcohol, Toluene, Ethyl acid or Methyl chloride. It might permanently damage the polarizer due to chemical reaction.
- (6)Wipe off water droplets or oil immediately. Staining and discoloration may occur if they left on panel for a long time.
- (7)If the liquid crystal material leaks from the panel, it should be kept away from the eyes or mouth. In case of contacting with hands, legs or clothes, it must be washed away thoroughly with soap.
- (8)Protect the module from static electricity, it may cause damage to the C-MOS Gate Array IC.
- (9)Do not disassemble the module.
- (10)Do not pull or fold the lamp wire.
- (11)Pins of I/F connector should not be touched directly with bare hands.

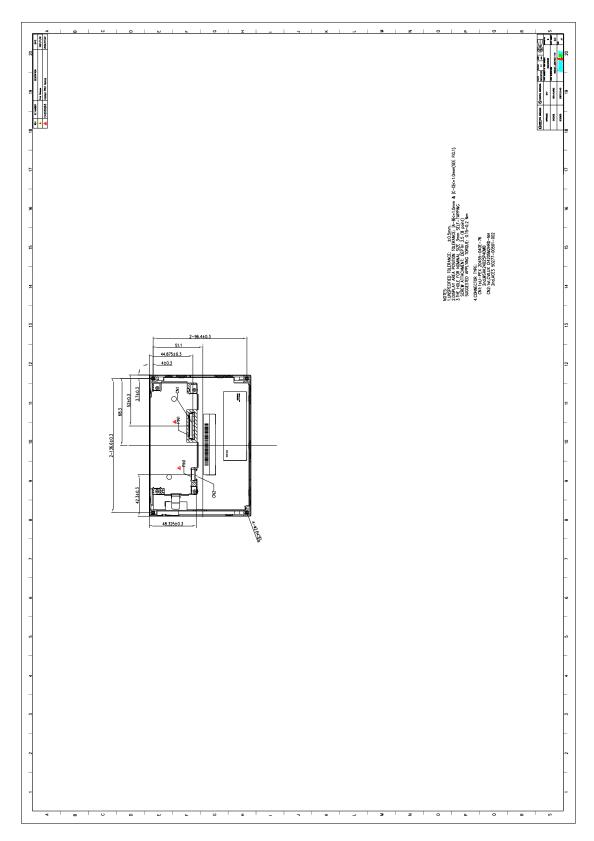
#### **11.2 STORAGE PRECAUTIONS**

- (1)When storing for a long time, the following precautions are necessary.
  - (a)Store them in a dark place. Do not expose the module to sunlight or fluorescent light. Keep the temperature between 5°C and 30°C at humidity 50+-10%RH.
  - (b) The polarizer surface should not come in contact with any other object.
  - (c) It is recommended that they be stored in the container in which they were shipped.
  - (d) Storage condition is guaranteed under packing conditions.
  - (e)The phase transition of Liquid Crystal in the condition of the low or high storage temperature will be recovered when the LCD module returns to the normal condition
- (2)High temperature or humidity may reduce the performance of module. Please store LCD module within the specified storage conditions.
- (3)It is dangerous that moisture come into or contacted the LCD module, because the moisture may damage LCD module when it is operating.
- (4)It may reduce the display quality if the ambient temperature is lower than 10 °C. For example, the respons time will become slowly, and the starting voltage of lamp will be higher than the room temperature.

# INNOLUX 群創光電

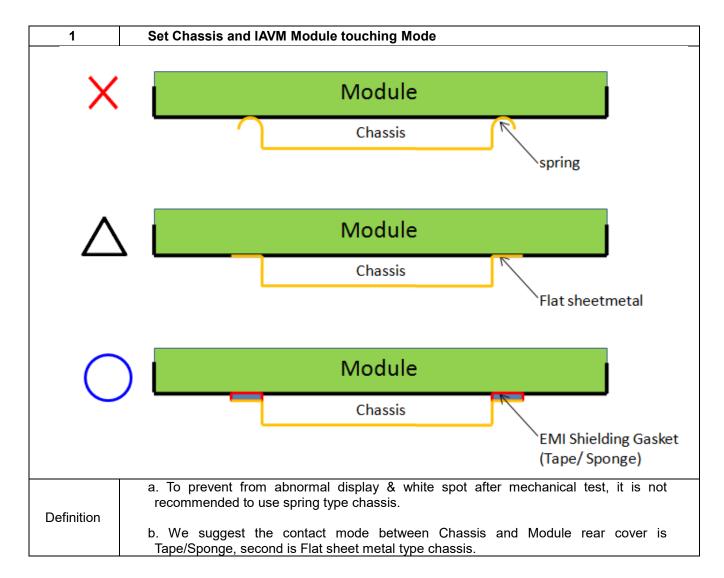

**11.3 OTHER PRECAUTIONS** 

(1)Normal operating condition

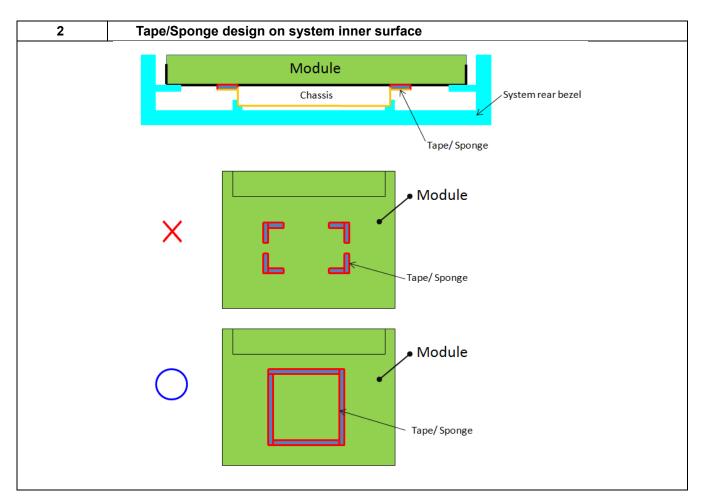

- (a) Display pattern: dynamic pattern (Real display)
- (Note) Long-term static display can cause image sticking.
- (2)Operating usages to protect against image sticking due to long-term static display
  - (a) Static information display recommended to use with moving image.
- (3)Abnormal condition just means conditions except normal condition.



**12. MECHANICAL CHARACTERISTICS** 

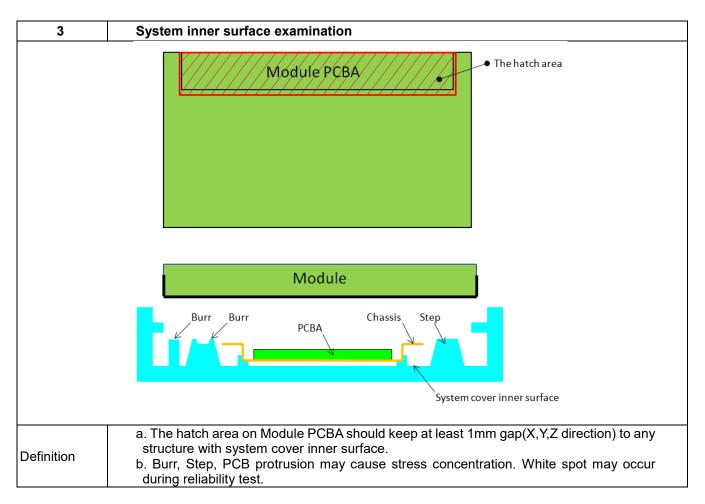




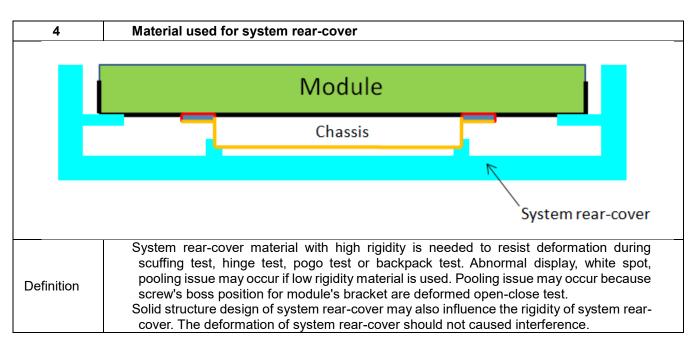



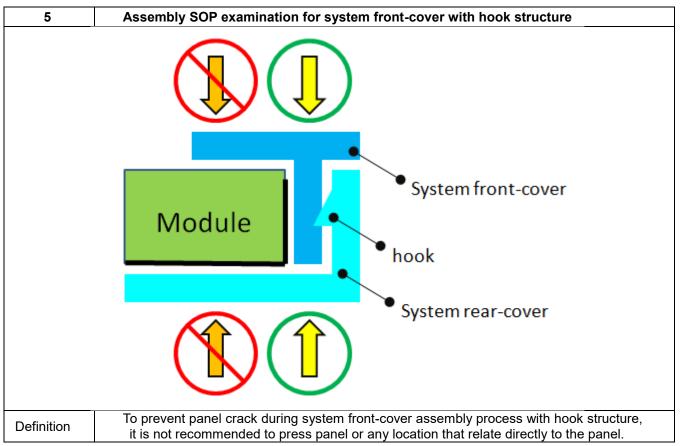



#### Appendix. SYSTEM COVER DESIGN NOTICE



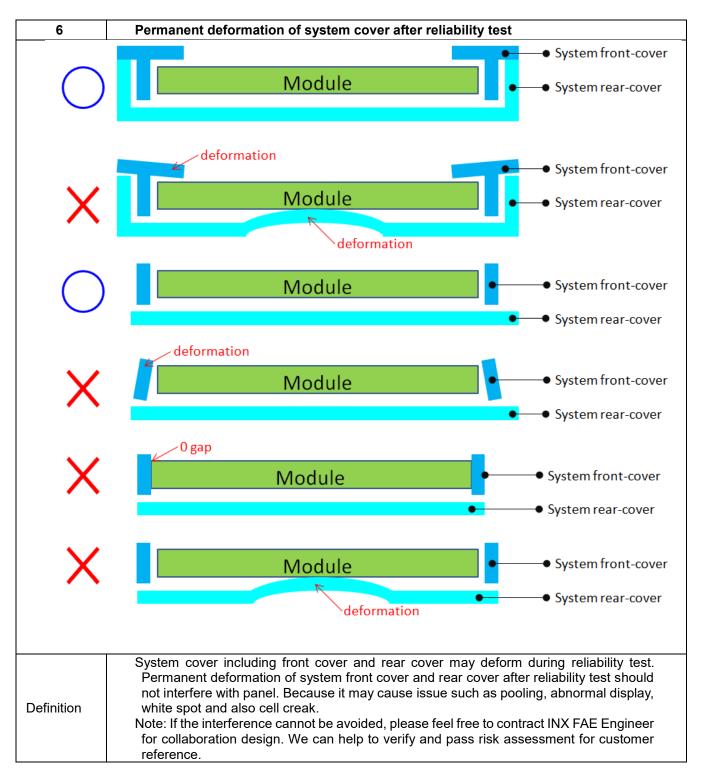


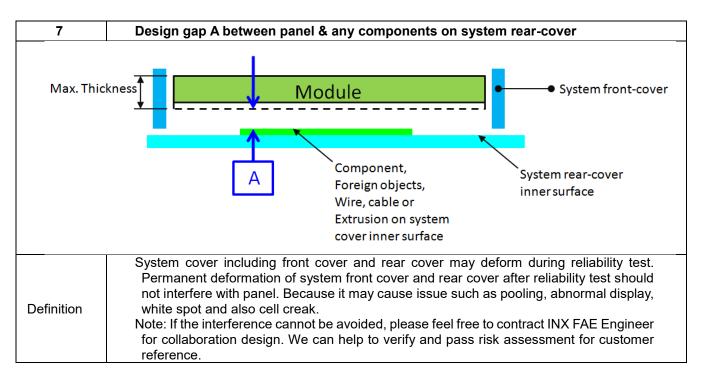


| Definition | a. To prevent from abnormal display & white spot after mechanical test, we suggest using<br>Tape/Sponge as medium between chassis and Module rear cover could reduce the<br>occurrence of white spot.                                       |
|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Demnition  | b. When using the Tape/Sponge, we suggest it be lay over between set chassis and<br>Module rear cover. It is not recommended to add Tape/Sponge in separate location.<br>Since each Tape/Sponge may act as pressure concentration location. |

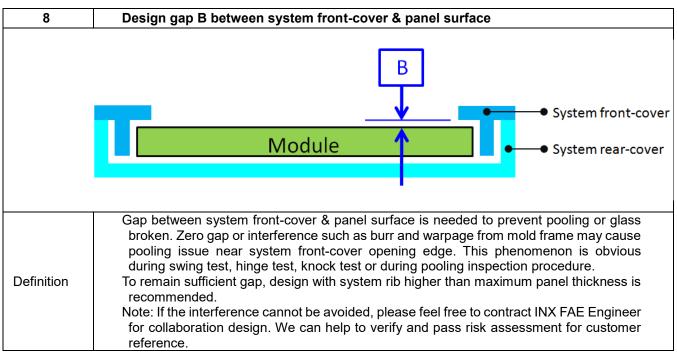




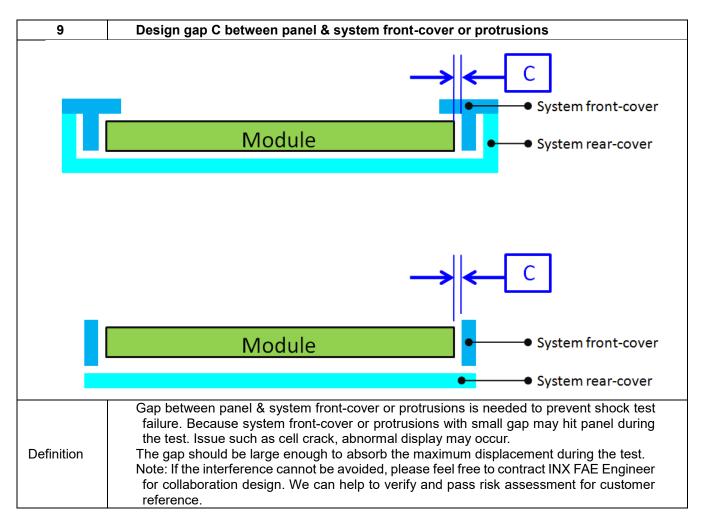




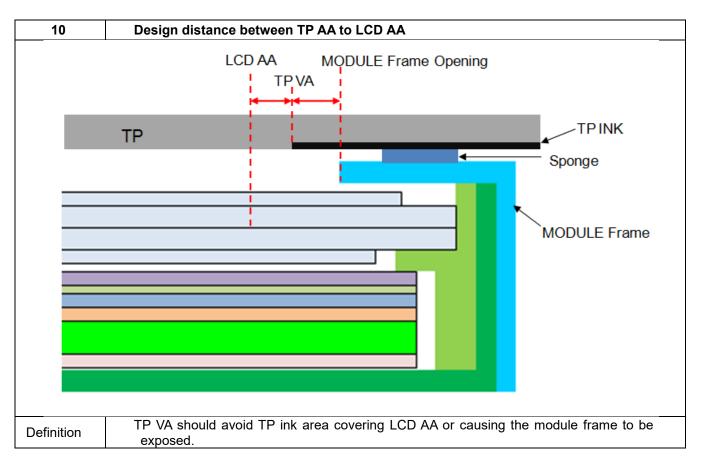





1 December 2023

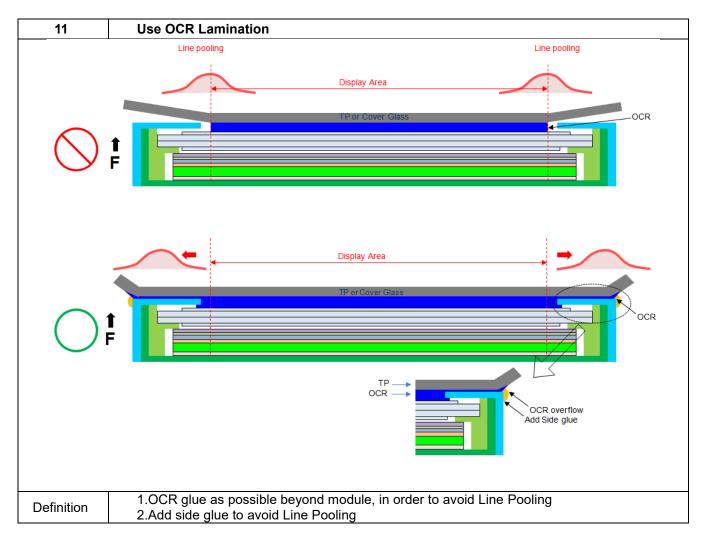























### All good things come in threes:

With **Hardware**, **Software** and **Services**, we realise unique display solutions that turn your ideas into reality.



### www.data-modul.com