

SPECIFICATION

G084SN05 V9 with touch panel

8.4" TFT - SVGA - + resisitive TP

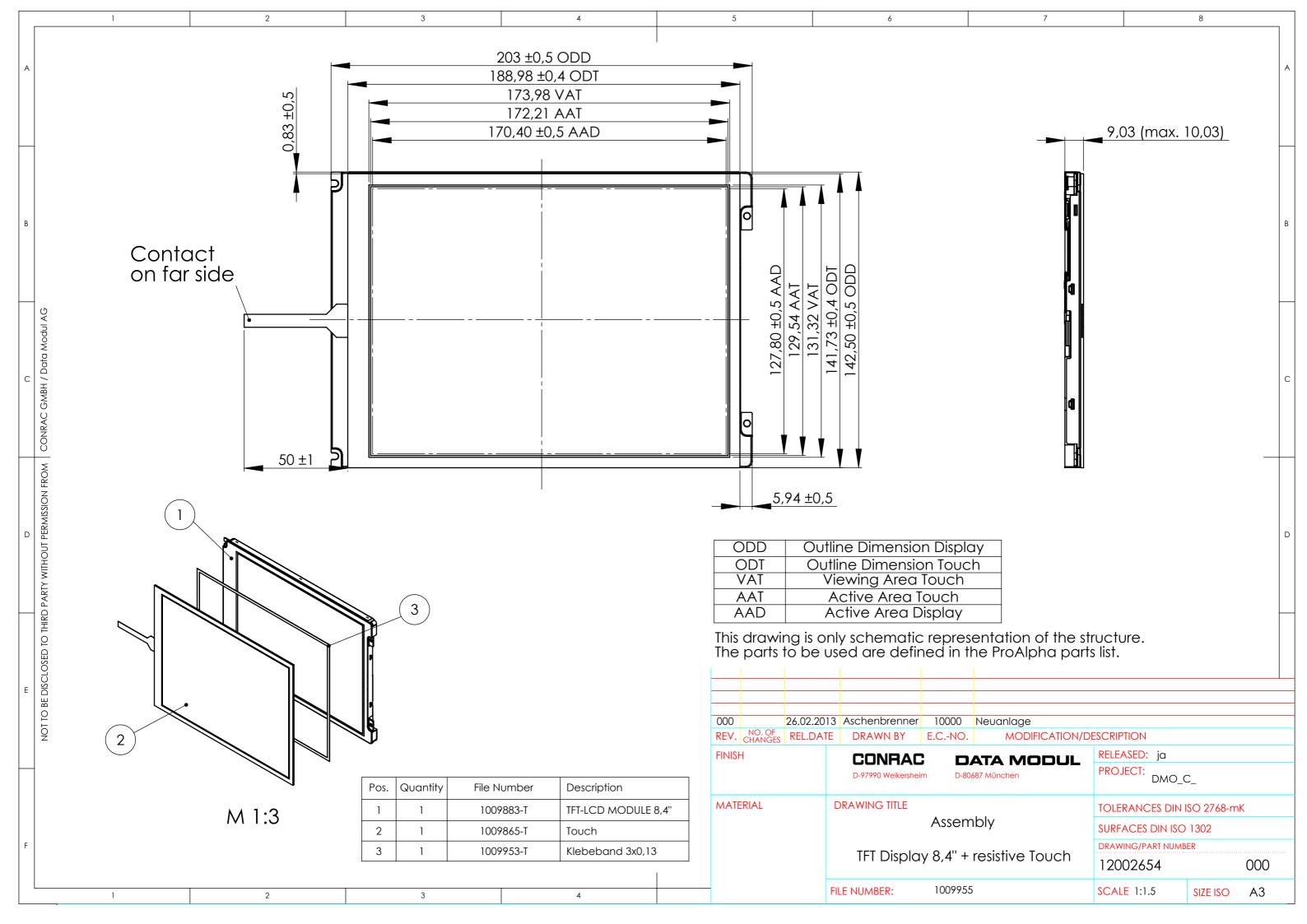
Version: 1.0

Date: 22.12.2017

Note: This specification is subject to change without prior notice

Display: AUO G084SN05 V9

Touch: DMC TP-3174S7F0


4-wire resistive Touch

Part-No: UP03100

Content

- Mechanical Drawing
- Appendix A: Specification of TFT
- Appendix B: Specification of touch panel

Please be aware that some of the values e.g. optical, mechanical etc. of the complete unit might differ from the original values of the individual components

☐ Preliminary	Specifications
---------------	-----------------------

■ Final Specifications

Module	8.4 Inch Color TFT-LCD
Model Name	G084SN05 V9

Checked & Approved by

Note: This Specification is subject to change without notice.

Approved by

Leader Feng

2011/12/28

Prepared by

Daniel PY Tsai

2011/12/28

General Display Business Division / AU Optronics corporation

Contents

1. Operating Precautions	4
2. General Description	5
2.1 Display Characteristics	5
2.2 Optical Characteristics	6
3. Functional Block Diagram	9
4. Absolute Maximum Ratings	10
4.1 Absolute Ratings of TFT LCD Module	10
4.2 Absolute Ratings of Environment	1C
5. Electrical Characteristics	11
5.1 TFT LCD Module	11
5.2 Backlight Unit	13
6. Signal Characteristic	14
6.1 Pixel Format Image	14
6.2 Signal Description	15
6.3 Scanning Direction	16
6.4 The Input Data Format	17
6.5 Interface Timing	18
6.6 Power ON/OFF Sequence	19
7. Connector & Pin Assignment	21
7.1 TFT LCD Signal (CN1): LVDS Connector	
7.2 LED Backlight Unit (CN2): LED Driver Connector	
7.3 LED Light Bar Input Connector (CN3): 8. Reliability Test Criteria	22
8. Reliability Test Criteria	22
9. Mechanical Characteristics	
9.1 LCM Front View	23
	24
10. Label and Packaging	25
10.1 Shipping Label (on the rear side of TFT-LCD display	<i>y</i>)25
10.2 Carton Package	25
11 Safety	26
11.1 Sharp Edge Requirements	26
11.2 Materials	26
11.3 Capacitors	26
11.4 National Test Lab Requirement	26

Version and Date	Page	Old description	New Description
0.0 2011/04/07		First Edition	
0.1 2011.08/01	5		Update Input Voltage, Power Consumption, Weight
	6		Update Response Time
	11		Update Power Specification
	13		Update Parameter guideline for LED backlight
	20, 21		Update LED Connector, Cable Color
1.0 2011/12/28	6	White Luminance condition @ I _F = 80mA	White Luminance condition @ I _F = 50mA
	6	TBD	Update Optical Characteristics spec.
	13	TBD	Update Parameter guideline for LED backlight
	22, 23	LCM Front, Rear View	Update LCM Front, Rear View

AND Confidential Hot Day and D

1. Operating Precautions

- 1) Since front polarizer is easily damaged, please be cautious not to scratch it.
- 2) Be sure to turn off power supply when inserting or disconnecting from input connector.
- 3) Wipe off water drop immediately. Long contact with water may cause discoloration or spots.
- 4) When the panel surface is soiled, wipe it with absorbent cotton or soft cloth.
- 5) Since the panel is made of glass, it may be broken or cracked if dropped or bumped on hard surface.
- 6) To avoid ESD (Electro Static Discharde) damage, be sure to ground yourself before handling TFT-LCD Module.
- 7) Do not open nor modify the module assembly.
- 8) Do not press the reflector sheet at the back of the module to any direction.
- 9) In case if a module has to be put back into the packing container slot after it was taken out from the container, do not press the center of the LED Reflector edge. Instead, press at the far ends of the LED Reflector edge softly. Otherwise the TFT Module may be damaged.
- 10)At the insertion or removal of the Signal Interface Connector, be sure not to rotate nor tilt the Interface Connector of the TFT Module.
- 11)After installation of the TFT Module into an enclosure (Notebook PC Bezel, for example), do not twist nor bend the TFT Module even momentary. At designing the enclosure, it should be taken into consideration that no bending/twisting forces are applied to the TFT Module from outside. Otherwise the TFT Module may be damaged.
- 12)Small amount of materials having no flammability grade is used in the LCD module. The LCD module should be supplied by power complied with requirements of Limited Power Source (IEC60950 or UL1950), or be applied exemption.
- 13) Severe temperature condition may result in different luminance, response time.
- 14)Continuous operating TFT-LCD Module under high temperature environment may accelerate LED light bar exhaustion and reduce luminance dramatically.
- 15) The data on this specification sheet is applicable when LCD module is placed in landscape position.
- 16)Continuous displaying fixed pattern may induce image sticking. It is recommended to use screen saver or shuffle content periodically if fixed pattern is displayed on the screen.

2. General Description

This specification applies to the 8.4 inch color TFT LCD module G084SN05 V9.

G084SN05 V9 designed with wide viewing angle; wide operating temperature and long life LEDs backlight is well suited to be the display units for Industrial Applications.

LED driving board for backlight unit is included in this panel and the structure of the LED units is replaceable.

G084SN05 V9 is built in timing controller and LVDS interface.

The screen format is intended to support the SVGA (800(H) x 600(V)) screen and 16.2M (RGB 8-bits) or 262k colors (RGB 6-bits).

G084SN05 V9 is a RoHS product.

2.1 Display Characteristics

The following items are characteristics summary on the table under 25°C condition:

Items	Unit	Specifications
Screen Diagonal	[inch]	8.4 (213.4mm)
Active Area	[mm]	170.4(H) x 127.8(V)
Pixels H x V		800x3(RGB) x 600
Pixel Pitch	[mm]	0.213x 0.213
Pixel Arrangement		R.G.B Vertical Stripe
Display Mode		TN, Normally White
Nominal Input Voltage VDD	[Volt]	3.3 (typ)
Typical Power Consumption	(Watt]	2.94 (typ)
Weight	[Grams]	250 (typ)
Physical Size	[mm]	203.0(W) x 142.5(H) x 8.0(D) (typ.)
Electrical Interface		1 channel LVDS
Surface Treatment		Anti-glare, Hardness 3H
Support Color		262K(6-bit) / 16.2M(8-bit)
Temperature Range Operating Storage (Non-Operating)	[°C]	-30 to +85 (panel surface temperature) -30 to +85
RoHS Compliance		RoHS Compliance

2.2 Optical Characteristics

The optical characteristics are measured under stable conditions at 25° C (Room Temperature):

ltem	Unit	Conditions	Min.	Тур.	Max.	Note		
White Luminance	[cd/m2]	I _F = 50mA (center point)	350	450	-	1		
Uniformity	%	9 Points	70	75	-	1, 2, 3		
Contrast Ratio			400	600	-	4		
	[msec]	Rising	-	20	30			
Response Time	[msec]	Falling	-	10	20	5		
	[msec]	Raising + Falling	-	30	50			
	[degree]	Horizontal (Right)	70	80	-			
Viewing Angle	[degree]	CR ≥ 10 (Left)	70	80	-			
Viewing Angle	[degree]	Vertical (Upper)	65	80	-	6		
	[degree]	CR ≥ 10 (Lower)	50	60	-			
		Red x	0.559	0.609	0.659			
		Red y	0.283	0.333	0.383]		
		Green x	0.315	0.365	0.415			
Color / Chromaticity Coordinates		Green y	0.520	0.570	0.620			
(CIE 1931)		Blue x	0.101	0.151	0.201	1		
		Blue y	0.056	0.106	0.156			
		White x	0.26	0.31	0.36			
		White y	0.28	0.33	0.38			
Color Gamut	%		2	45	-	1		

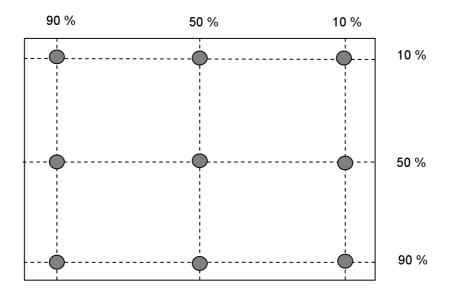
Note 1: Measurement method

Equipment : Pattern Generator, Power Supply, Digital Voltmeter, Luminance meter (SR_3 or equivalent)

Aperture 1° with 50cm viewing distance

Test Point Center

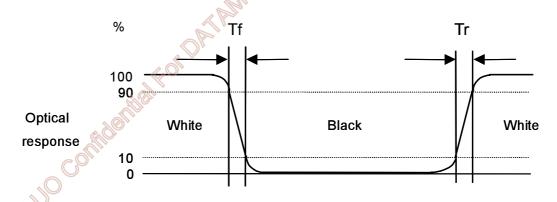
LCD Module


SR_3 or equivalent

Measuring distance

Module Driving Equipment

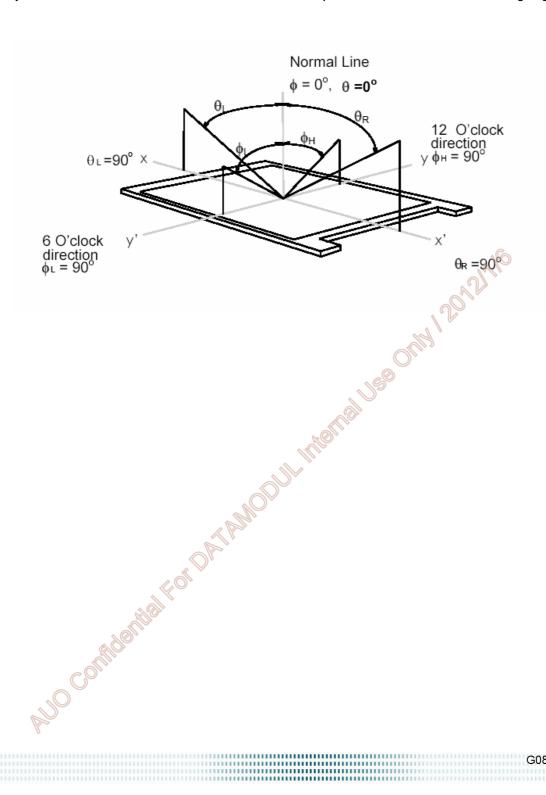
Note 2: Definition of 9 points position (Display active area: 170.4(H) x 127.8(V))


Note 3: The luminance uniformity of 9 points is defined by dividing the minimum luminance value by the maximum test point luminance

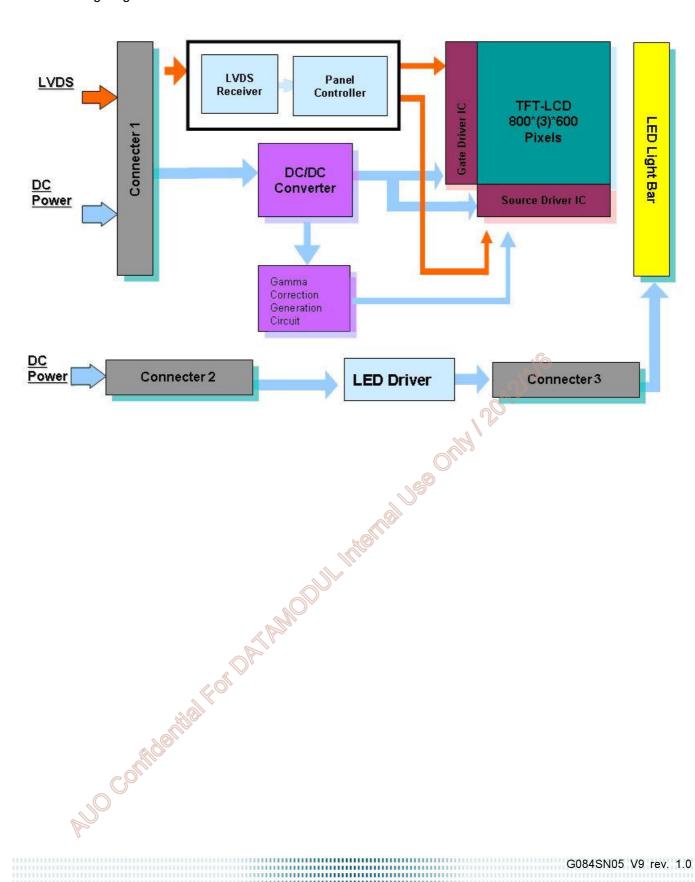
$$\delta_{\text{W9}} = \frac{\text{Minimum Brightness of nine points}}{\text{Maximum Brightness of nine points}}$$

Note 4: Definition of contrast ratio (CR):

Note 5: Definition of response time:


The output signals of photo detector are measured when the input signals are changed from "White" to "Black" (falling time) and from "Black" to "White" (rising time), respectively. The response time interval is between 10% and 90% of amplitudes. Please refer to the figure as below.

Note 6: Definition of viewing angle


Viewing angle is the measurement of contrast ratio \ge 10, at the screen center, over a 180° horizontal and 180° vertical range (off-normal viewing angles). The 180° viewing angle range is broken down as below: 90° (θ) horizontal left and right, and 90° (Φ) vertical high (up) and low (down). The measurement direction is typically perpendicular to the display surface with the screen rotated to its center to develop the desired measurement viewing angle.

3. Functional Block Diagram

The following diagram shows the functional block of the 8.4 inch color TFT/LCD module:

4. Absolute Maximum Ratings

4.1 Absolute Ratings of TFT LCD Module

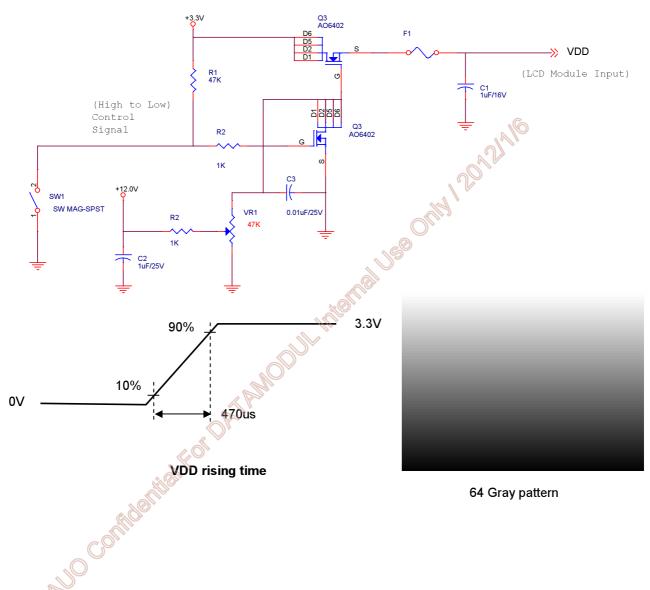
ltem	Symbol	Min	Max	Unit	Conditions
Logic/LCD Drive Voltage	VDD	-0.3	+3.6	[Volt]	

4.2 Absolute Ratings of Environment

Item	Symbol	Min	Max	Unit
Operating Temperature	TOP	-30	+85	[°C]
Operation Humidity	НОР	5	90	[%RH]
Storage Temperature	TST	-30	+85	[°C]
Storage Humidity	HST	5	90	[%RH]

Note: Maximum Wet-Bulb should be 390C and no condensation.

AN Confidential For DATAMODUL. Internal Use Only 120 ANNE

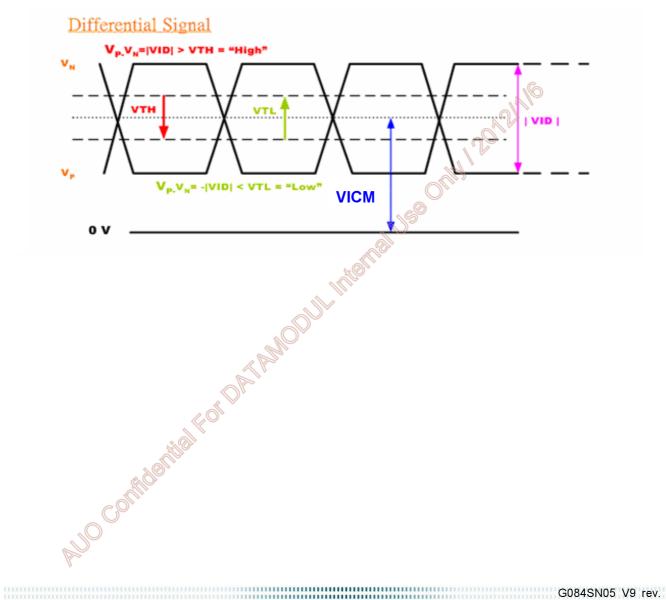

5. Electrical Characteristics

5.1 TFT LCD Module

5.1.1 Power Specification

Symbol	Parameter	Min	Тур	Max	Units	Remark
VDD	Logic/LCD Drive Voltage	3.0	3.3	3.6	[Volt]	±10%
I _{VDD}	VDD Current	-	270	330	[mA]	64 Gray Bar Pattern (VDD=3.3V, at 60Hz)
P _{VDD}	VDD Power	-	0.9	1.2	[Watt]	64 Gray Bar Pattern (VDD=3.3V, at 60Hz)

Note 1: Measurement condition:



5.1.2 Signal Electrical Characteristics

Input signals shall be low or Hi-Z state when VDD is off.

Symbol	ltem	Min.	Тур.	Max.	Unit	Remark
VTH	Differential Input High Threshold	ı	ı	100	[mV]	VICM=1.2V
VTL	Differential Input Low Threshold	-100	-	-	[mV]	VICM=1.2V
VID	Input Differential Voltage	100	400	600	[mV]	
VICM	Differential Input Common Mode Voltage	1.1		1.6	[V]	VTH/VTL=±100mV

Note: LVDS Signal Waveform.

G084SN05 V9 rev. 1.0

5.2.1 Parameter guideline for LED backlight

Following characteristics are measured under a stable condition using an inverter at 250C (Room Temperature):

Symbol	Parameter	Min.	Тур.	Max.	Unit	Remark
VCC	Input Voltage	10.8	12	12.6	[Volt]	
I _{vcc}	Input Current	ı	0.17	ı	[A]	100% PWM Duty
P _{vcc}	Power Consumption	-	2.04	2.14	[Watt]	100% PWM Duty
F _{PWM}	Dimming Frequency	200	-	20K	[Hz]	
	Swing Voltage	3	3.3	5.5	V	
	Dimming Duty Cycle	5	-	100	%	
I _F	LED Forward Current	-	50	52.5	mA	Ta = 25°C
		-	21		Volt	$I_F = 50 \text{mA}, \text{Ta} = -30^{\circ}\text{C}$
V _F	LED Forward Voltage		19.2	21.9	Volt	I _F = 50mA, Ta = 25°C
			18.3			I _F = 50mA, Ta = 85°C
P _{LED}	LED Power Consumption	-	1.92	-	Watt	= 50mA, Ta = 25°C (total power)
Operation Lifetime		50,000			Hrs	I _F = 50mA, Ta = 25°C

- Note 1: Ta means ambient temperature of TFT-LCD module.
- Note 2: VCC, Ivcc, P_{VCC} are defined for LED B/L.(100% duty of PWM dimming)
- Note 3: I_F, V_F are defined for each channel of LED Light Bar. There are two LED channels (AN1-CA1-CA2) in back light unit.
- Note 4: If G084SN05 V9 module is driven by high current or at high ambient temperature & humidity condition. The operating life will be reduced.
- Note 5: Operating life means brightness goes down to 50% initial brightness. Minimum operating life time is estimated data.

6. Signal Characteristic

6.1 Pixel Format Image

Following figure shows the relationship between input signal and LCD pixel format.

		1			2			7	99		800	
		1			_ 	•			<i>∍⋾</i> 		300	
1st Line	R	G	В	R	G	В		R	G	В	R G	В
		٠					1					
		i			•		•		•		•	
							1				•	
		•			•		1		•		1	
							1		:			
		•			•		•		•		•	
		:			•		•				•	
									П			(©
600th Line	R	G	В	R	G	В		R	G	В	R G	В

6.2 Signal Description

LVDS is a differential signal technology for LCD interface and high speed data transfer device. The connector pin definition is as below.

Pin No.	Symbol	Description
1	VDD	Power Supply, 3.3V (typical)
2	VDD	Power Supply, 3.3V (typical)
3	UD	Vertical Reverse Scan Control, When UD=Low or NC → Normal Mode. When UD=High → Vertical Reverse Scan. _{Note}
4	LR	Horizontal Reverse Scan Control, When LR=Low or NC → Normal Mode. When LR=High → Horizontal Reverse Scan. _{Note}
5	RxIN1-	LVDS differential data input Pair 0
6	RxIN1+	2000 amoronian data inpatri dii 0
7	GND	Ground
8	RxIN2-	-LVDS differential data input Pair 1
9	RxIN2+	LVDO differential data input i ali i
10	GND	Ground
11	RxIN3-	LVDS differential data input Pair 2
12	RxIN3+	
13	GND	Ground
14	RxCLKIN-	LVDS differential Clock input Pair
15	RxCLKIN+	2020 differential olook inpact all
16	GND	Ground
17	SEL 68	LVDS 6/8 bit select function control Low or NC \rightarrow 6 Bit Input Mode. High \rightarrow 8 Bit Input Mode. Note
18	NC	NC
19	RxIN4-	LVDS differential data input Pair 3. Must be set to NC in
20	RxIN4+	6 bit input mode.

Note: "Low" stands for 0V. "High" stands for 3.3V. "NC" stands for "No Connected."

6.3 Scanning Direction

The following figures show the image seen from the front view. The arrow indicates the direction of scan.

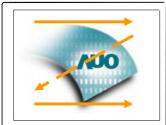


Fig. 1

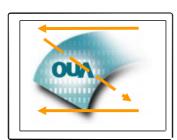
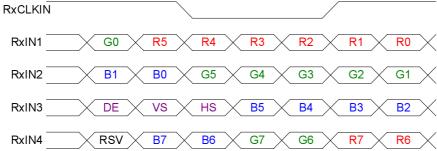


Fig. 2

Fig. 3

- WO Confidential For Distriction of the Property of the Confidential For Distriction of the Confidentia Fig. 1 Normal scan (Pin3, UD = Low or NC; Pin4, RL = Low or NC)
- Fig. 2 Reverse scan (Pin3, UD = Low or NC; Pin4, RL = High)
- Fig. 3 Reverse scan (Pin3, UD = High; Pin4, RL = Low or NC)
- Fig. 4 Reverse scan (Pin3, UD = High; Pin4, RL = High)


6.4 The Input Data Format

6.4.1 SEL68

SEL68 = "Low" or "NC" for 6 bits LVDS Input

SEL68 = "High" for 8 bits LVDS Input

Note1: Please follow PSWG.

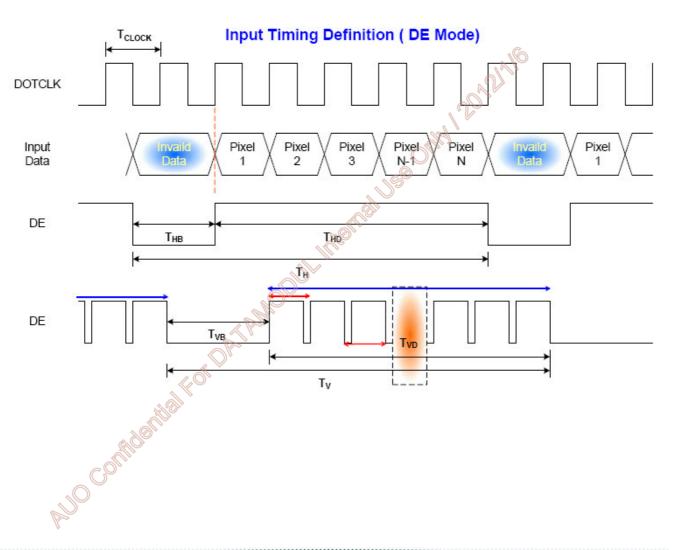
Note2: R/G/B data 7:MSB, R/G/B data 0:LSB

Signal Name	Description	Remark
R7	Red Data 7 (MSB)	Red-pixel Data
R6	Red Data 6	Each red pixel's brightness data consists of these
R5	Red Data 5	8 bits pixel data.
R4	Red Data 4	nd !
R3	Red Data 3	
R2	Red Data 2	0,*
R1	Red Data 1	
R0	Red Data 0 (LSB)	
G7	Green Data 7 (MSB)	Green-pixel Data
G6	GreenData 6	Each green pixel's brightness data consists of these
G5	GreenData 5	8 bits pixel data
G4	GreenData 4	
G3	GreenData 3	
G2	GreenData 2	
G1	GreenData 1	
G0	GreenData 0 (LSB)	
B7	Blue Data 7 (MSB)	Blue-pixel Data
B6	Blue Data 6	Each blue pixel's brightness data consists of these
B5	Blue Data 5	8 bits pixel data.
B4	Blue Data 4	
B3	Blue Data 3	
B2	Blue Data 2	
B1	Blue Data 1	
B0	Blue Data 0 (LSB)	
RxCLKIN+	LVDS Clock Input	
RxCLKIN-		
DE C	Display Enable	
VS	Vertical Sync	
HS	Horizontal Sync	

Note: Output signals from any system shall be low or Hi-Z state when VDD is off.

6.5 Interface Timing

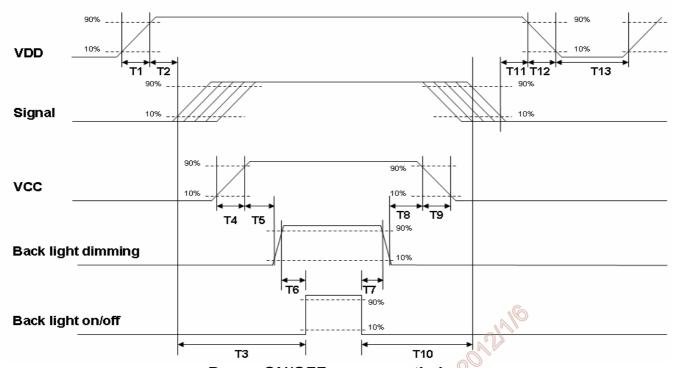
6.5.1 Timing Characteristics


DE mode only

Parameter		Symbol	Min.	Тур.	Max.	Unit	Condition
Clock frequency		1/ T _{Clock}	33.6	39.8	48.3	MHz	
	Period	T_V	608	628	650		
Vertical Section	Active	T_{VD}	600	600	600	T _H	
0000011	Blanking	T _{VB}	8	28	50		
	Period	T _H	920	1056	1240		
Horizontal Section	Active	T_{HD}	800	800	800	T_{Clock}	
	Blanking	T _{HB}	120	256	440		

Note: Frame rate is 60 Hz.

Note: DE mode.


6.5.2 Input Timing Diagram

6.6 Power ON/OFF Sequence

VDD power and BackLight on/off sequence is as below. Interface signals are also shown in the chart. Signals from any system shall be Hi-Z state or low level when VDD is off.

Power ON/OFF sequence timing

Parameter		Value		Units
Parameter	Min.	Тур.	Max.	Offics
T1	0.5	<u></u>	10	[ms]
T2	30	40	50	[ms]
Т3	200		1	[ms]
T4	0.5	<u> </u>	10	[ms]
T5	10		1	[ms]
Т6	10	-	1	[ms]
T7		-	1	[ms]
T8	10	-	1	[ms]
T9	1	1	10	[ms]
T10	110			[ms]
T11	0	16	50	[ms]
T12			10	[ms]
T13	1000			[ms]

The above on/off sequence should be applied to avoid abnormal function in the display. Please make sure to turn off the power when you plug the cable into the input connector or pull the cable out of the connector.

AND Confidential Hot Distrated by Distrate and Distrated by Confidential Hot Distrated by Distrate and Distrated by Distrate and Distrated by Distrate and Distrated by Distrated by Distrate and Distrated by Distra

7. Connector & Pin Assignment

Physical interface is described as for the connector on module. These connectors are capable of accommodating the following signals and will be following components.

7.1 TFT LCD Signal (CN1): LVDS Connector

Connector Name / Designation	Signal Connector
Manufacturer	STM, Hirose or compatible
Connector Model Number	STM -MSB24013P20HA, Hirose- DF19LA-20P-1H or compatible
Mating Model Number	STM-P24013P20, Hirose-DF19-20S-1C or compatible

Pin No.	Signal Name	Pin No.	Signal Name
1	VDD	2	VDD
3	UD	4	LR
5	RxIN1-	6	RxIN1+
7	GND	8	RxIN2-
9	RxIN2+	10	GND
11	RxIN3-	12	RxIN3+
13	GND	14	RxCKIN-
15	RxCKIN+	16	GND
17	SEL 68	18	NC (S
19	RxIN4-	20	RxIN4+

7.2 LED Backlight Unit (CN2): LED Driver Connector

Connector Name / Designation	LED Connector
Manufacturer	ENTERY
Connector Model Number	ENTERY 3808K-F04N-02R or compatible
Mating Model Number	ENTERY H208K-P04N-02B or compatible.

Pin#	Symbol Pin Description	
1	VCC	12V input
2	GND	GND
3	Display_ON/OFF	+5.0V or +3.3 V:ON, 0V:OFF
4	Dimming	PWM

7.3 LED Light Bar Input Connector (CN3):

Manufacturer	ENTERY
Connector Model Number	ENTERY 3800K-F03N-03 or compatible
Mating Connecter Model Number	ENTERY H203K-D03N-04B or compatible

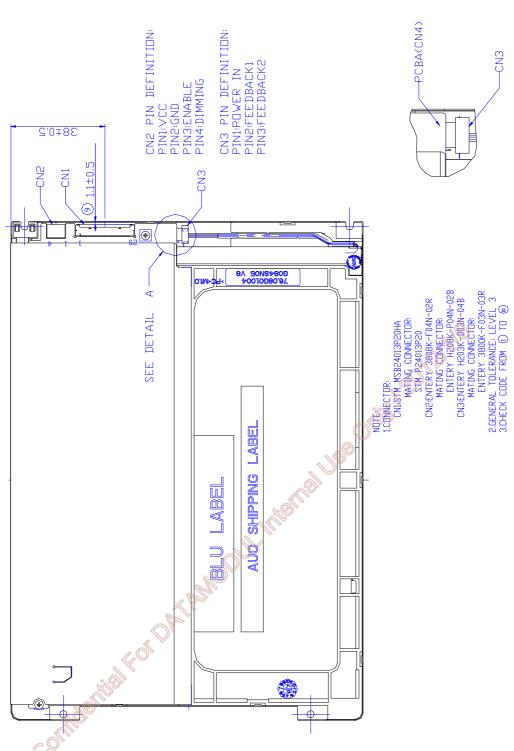
Pin #	Symbol	Pin Description
1	AN1	LED anode
2	CA1	LED cathode
3	CA2	LED cathode

Pin#	Symbol	Cable color
1	AN1	Red
2	CA1	Black
3	CA2	Black

8. Reliability Test Criteria

Items	Required Condition	Note
Temperature Humidity Bias	40°C/90%,300 hours	
High Temperature Operation	85°C,300 hours	
Low Temperature Operation	-30°C,300 hours	
Hot Storage	85°C,300 hours	
Cold Storage	-30°C,300 hours	
Thermal Shock Test	-20°C/30 min ,600C/30 min ,100cycles	
Shock Test (Non-Operating)	50G,20ms,Half-sine wave,(±X, ±Y, ±Z)	
Vibration Test	1.5G, (10~200Hz, P-P)	
(Non-Operating)	30 mins/axis (X, Y, Z)	
On/off test	On/10 sec, Off/10 sec, 30,000 cycles	
ESD	Contact Discharge: ± 8KV, 150pF(330Ω) 1sec, 8 points, 25 times/ point	Note 1
	Air Discharge: ± 15KV, 150pF(330Ω) 1sec, 8 points, 25 times/ point	INOLE I

Note1: According to EN61000-4-2, ESD class B: Some performance degradation allowed. No data lost . Self-recoverable. No hardware failures.


G084SN05 V9 rev. 1.0

(10) 8,0±0,3 S.7₈

G084SN05 V9 rev. 1.0

DETAIL A SCALE 2,000

G084SN05 V9

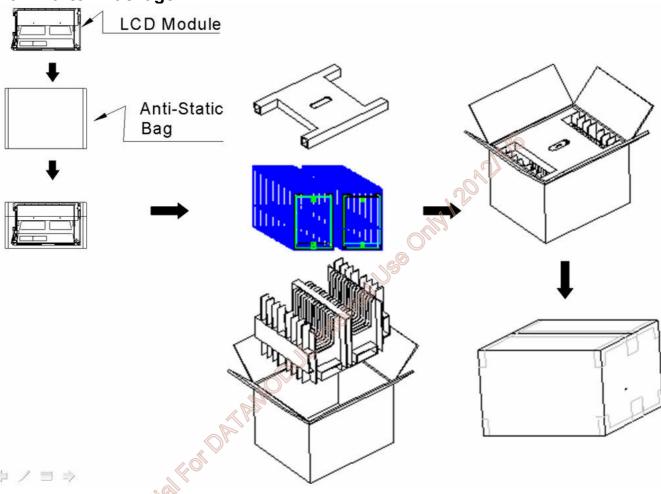
Reminding to check screw's torque value before fastening panel.

10. Label and Packaging

10.1 Shipping Label (on the rear side of TFT-LCD display)

000000000000000000000

Manufactured XX/XX Model No: G084SN05 V.9 AU Optronics MADE IN CHINA (Sxx)



10.2 Carton Package

Note:

- 1. Max. Capacity: 30pcs LCD Modules / per carton
- 2. Max. Weight: 12 kg/per carton
- 3. The outside dimension of carton is 405(L) mm x 328(W) mm x 301(H) mm

11.1 Sharp Edge Requirements

There will be no sharp edges or corners on the display assembly that could cause injury.

11.2 Materials

11.2.1 Toxicity

There will be no carcinogenic materials used anywhere in the display module. If toxic materials are used, they will be reviewed and approved by the responsible AUO toxicologist.

11.2.2 Flammability

All components including electrical components that do not meet the flammability grade UL94-V1 in the module will complete the flammability rating exception approval process.

The pRxINted circuit board will be made from material rated 94-V1 or better. The actual UL flammability rating will be pRxINted on the pRxINted circuit board.

11.3 Capacitors

If any polarized capacitors are used in the display assembly, provisions will be made to keep them from being inserted backwards.

11.4 National Test Lab Requirement

The display module will satisfy all requirements for compliance to:

UL 1950, First Edition

reconfidential from the line of the line o U.S.A. Information Technology Equipment

Specification

AST/ATP Series Revision 11

Version March 23, 2010

Table of Contents

1. Product Specifications	3
1-1. Product Applicable	3
1-2. Structure	3
1-3. Environmental Specifications	3
1-4. Mechanical Characteristics	3
1-5. Electrical Characteristics	3
1-6. Appearance	4
2. Testing Regulation	5
2-1. Testing Regulation	5
2-2. Environmental Specifications	5
2-3. Mechanical Characteristics	5
2-4. Electrical Characteristics	6
2-5. Appearance	6
3. Reliability Condition	7
3-1. Temperature Condition	7
4. Recommended Connector	7
4-1. Recommended Connector	7
5. Handling Notes	8
5-1. Precautions	8
5-2. Handling Notes	8
5-3. Construction Notes	8
5-4. Electrical & Software Notice	8
5-5. Mounting Notes	g
6. Warranty	10
6-1. Warranty Period	10
6-2. Warranty Target	10
6-3. Warranty Exceptions	10
6-4. Tools	10
6-5. Changes	10
7. Revision history	11

1. Product Specifications

1-1. Product Applicable

§ This specification is applied to the analog resistive touchscreen: ATP/AST Series.

1-2. Structure

§ Dimensions, structure, and shape are referred on the drawing attached.

1-3. Environmental Specifications

Specification	Value	
Operating Temperature	-20°C to 70°C (no condensation)	
Operating Humidity	-20°C to 60°C Less than 90%RH (no condensation)	
Operating Humidity	Exceeding 60°C 133.8g/m ³ (no condensation)	
Storage Temperature	-40°C to 80°C (no condensation)	
Ctorage Humidity	-40°C to 60°C Less than 95%RH (no condensation)	
Storage Humidity	Exceeding 60°C 142.9g/m ³ (no condensation)	
Chemical Resistance (top surface)	Toluene, Tricholoroethylene, Athetone, Alcohol, Gasoline, Machine Oil, Ammonia, Glass Cleaner, Mayonnaise, Ketchup, Wine, Salad Oil, Vinegar, Lipstick, etc.	

1-4. Mechanical Characteristics

Specification	Value		
Activation Force	0.05N to 0.8N		
On a matin at 1 if a	Input (finger)	10,000,000 hits	
Operating Life	Character Input (pen)	100,000 characters	
Light Transmittance	Over 80% (typical value at full wavelength)		
Surface Hardness	Over 2H (by JIS pencil hardness)		

1-5. Electrical Characteristics

Specification	Value		
Maximum Voltage	DC6V		
	Top Electrode	100mA	
Maximum Current	Bottom Electrode	100mA	
	Between the Top and Bottom	0.5mA	
Linearity	Under ±2% (Under ±1% (typical value))		
Terminal Resistance	Top Electrode	Less than $1k\Omega$	
Terrilliai Nesistance	Bottom Electrode	Less than $1k\Omega$	
Insulation Resistance	Neighboring Terminals	Over 20MΩ at 25V	
	Active Area Electrodes	Over 20MΩ at 25V	
Chattering	Less than 10msec at ON/OFF.		

1-6. Appearance

§ Scratch, dust (W = width, L = length, D = average diameter = (longest + shortest) /2)

Item	Width (mm)	Length (mm)	Acceptable Numbers	Total
Linear(Scratch/Dust)	0.1≥W>0.05	4≥L	1pcs in φ30mm	
Over 0.1mm in diameter refer to the	0.05≥W>0.03	10≥L	2pcs in φ20mm	
Circular.	0.03≥W	20≥L	Acceptable	Within 5pcs
	0.4≥D>0.3 *1		1pcs in viewing area *1	/panel
Circular (Scratch/Dust)	0.3≥D>0.2		2pcs in φ30mm	
0.2≥D		≥D	Acceptable	

Applied only in the Active Area. Scratches or dusts in the outside of the Active Area are acceptable unless the electrical characteristics are affected.

§ Dirt

Acceptable if not noticeable on a black mat.

§ Tip, crack (t = glass thickness) (applicable only for the glass)

Item	Size (mm)			Acceptable Numbers
	Corner	Х	≤3	
Corner		Y	≤3	2pcs /panel
		Z	≤t	
	Side	X	≤5	
Side		Y	≤3	2pcs /side
		Z	≤t	
Crack				Not acceptable

^{*1} Applied to the size of 14 inches or more.

2. Testing Regulation

2-1. Testing Regulation

- § If the regulation is not specified, the test is performed under the supplier's regulation.
- § Tests are performed under the room temperature unless specified. The room temperature is referred as follows:

Temperature: 20°C±5°C Humidity: 65%±10%RH

2-2. Environmental Specifications

§ Chemical Resistance Test

Condition: Tested after leaving the chemical on the surface for 12 hours being wiped off by cloth.

Judgement: Must be no effect in appearance.

2-3. Mechanical Characteristics

§ Activation Force Test

Condition: Measured by depressing the point between

the dots to the conduction by the testing rod

(Figure 1).

Judgement: Must satisfy the specification.

§ Operating Life Test (Finger)

Condition: Testing rod: Refer to Figure 1

Voltage: DC5V Load: 3N Cycle: 2 hits/sec

Judgement: Must satisfy the following:

Activation Force: Must satisfy the specification.
Linearity: Must satisfy the specification.
Terminal Resistance: Must satisfy the specification.
Insulation Resistance: Must satisfy the specification.

§ Operating Life Test (Pen)

Condition: Testing rod: Refer to Figure 2

Voltage: DC5V Load: 2.5N Input size: 10 x 10 mm Input character: A to Z/minute

Judgement: Must satisfy the following:

Activation Force: Must satisfy the specification.
Linearity: Must satisfy the specification.
Terminal Resistance: Must satisfy the specification.
Insulation Resistance: Must satisfy the specification.

Figure 1. Testing rod 1

Polyacetal resin Tip: R = 0.8

Silicon Rubber

(Hardness: 60° Tip: R = 4.0

Figure 2. Testing rod 2

2-4. Electrical Characteristics

§ Terminal Resistance Test

Condition: Top and bottom electrodes are measured at the terminal.

Judgement: Must satisfy the specification.

§ Insulation Resistance Test

Neighboring Terminals: Measured by applying the reference voltage to the terminals

Active Area Electrodes: Measured by applying the reference voltage to the top and bottom electrodes.

Judgement: Must satisfy the specification.

2-5. Appearance

§ Appearance Test

Condition: Tested by an examiner with over 1.0 eyesight at 30cm away from the product under the

transmittable light at over 60° the surface of the product.

Judgement: Must satisfy the specification.

3. Reliability Condition

3-1. Temperature Condition

§ Temperature Condition Test

Following test are performed in the condition with no dew condensation:

Cold Test: Tested after leaving the parts in -40°C±3°C for 240 hours and in the room temperature

for 2 hours.

Heat Test: Tested after leaving the parts in 80°C±3°C for 240 hours and in the room temperature for

2 hours.

Humidity Test: Tested after leaving the parts in the temperature 60°C±3°C, humidity 90 to 95% for 240

hours and in the room temperature for 2 hours.

Cycle Test: Tested after 5 cycles of leaving the parts in the temperature -30°C±3°C for 1 hour and in

the room temperature for 0.5 hours, then leaving the parts in the temperature 70°C±3°C

for 1 hour and in the room temperature for 0.5 hours.

Judgement: Must satisfy the following:

Activation Force: Must satisfy the specification.
Linearity: Must satisfy the specification.
Terminal Resistance: Must satisfy the specification.
Insulation Resistance: Must satisfy the specification.
Appearance: Must satisfy the specification.

4. Recommended Connector

4-1. Recommended Connector

Part No.	Pins	Pitch
KCA-K4R	4 pin Double-sided	1.25mm

5. Handling Notes

5-1. Precautions

§ This product is intended for use in standard applications (computers, office automation, and other office equipment, industrial, communications, and measurement equipment, personal and household devices, etc.) Please avoid using this product for special applications where failure or abnormal operation may directly affect human lives, or cause physical injury or property damage, or where extremely high levels of reliability are required (such as aerospace systems, vehicle operating control, atomic energy controls, medical devices for life support, etc.).

5-2. Handling Notes

- § Do not depress or scratch the product with any object with a sharp edge or end.
- § Do not forcibly bend or fold the product.
- § When the product is stored, make sure it is packed in a packing box and stored in a storage temperature range, eliminating any outside load.
- § Do not use or store the product under a condition where the product will be exposed to water, organic solution or acid.
- § Do not use the product under the direct sunlight.
- § Do not disassemble the product.
- § When you handle the product, Hold the product by its body. Do not hold by the tail.
- § Clean the product with a soft cloth or a soft cloth with neutral detergent or alcohol. When contaminated by chemicals, wipe them off immediately with caution not to cause injury to human body.
- § The edge of the glass is not rounded and may cause injury.

5-3. Construction Notes

- § The environmental specifications, mechanical characteristics, and electrical characteristics are only applied to the Active Area.
- § Do not use the touchscreen when the condensation occurs. The condensation inside of the touchscreen is a natural phenomenon and should disappear after the touchscreen is warmed up.

5-4. Electrical & Software Notice

The best performance can be obtained when used with the original analog resistive touchscreen controller, "TSC-10" Series. If the touchscreen controller or controller software is to be developed by the customer, please note the following:

- § There is a contact resistance between the top and bottom electrodes and it changes by the pressure of a finger or a pen. The data must be read after the contact resistance becomes stabilized.
- § The terminal resistance of the analog resistive touchscreen varies by the individual, time, and environment. The controller software must have the calibration function to adjust the input position and the display position.
- § The analog resistive touchscreen outputs 2 point input as 1 point in between the 2 points. The controller software must not be designed to have the 2 point input function.
- § For drawing applications, the line may be intermittent when the pen comes on the dot spacers. A software compensation is needed.

5-5. Mounting Notes

§ Bezel Edge

Bezel edge must be positioned in the area between the Active Area and the Viewing Area. The bezel may press the touchscreen and cause input if the edge enters the Active Area.

§ Gap between the Bezel and Touchscreen

A gap of approximately 0.5mm is needed between the bezel and the top electrode. It may cause unexpected input if the gap is too narrow.

§ Cushion

If a cushion is used between the bezel and the top electrode, the cushion must be free enough to absorb the expansion and contraction difference between the bezel and the top electrode. If the cushion is squashed too hard, the expansion and the contraction difference may cause the distortion to the top electrode.

The cushion must be positioned more than 1mm outward from an inside of the insulation area. (Please refer to right figure)

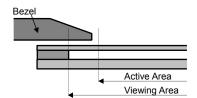
§ Tolerance

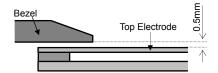
There is a tolerance of 0.2 to 0.3mm for the dimensions of the touchscreen and the tail. A gap must be made to absorb the tolerance in the case and the connector.

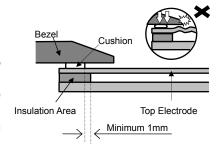
§ Tail

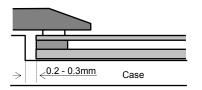
The tail must not be forcibly stressed or bent too hard to avoid the conduction in the insulated area and wire breaking.

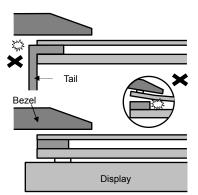
§ Mounting

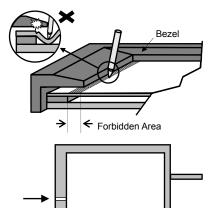

Touchscreen must be held from the bottom such as the structure gluing the touchscreen onto the display. If the touchscreen is glued to the bezel, the adhesion between the top and bottom electrode is stressed and may come off.


§ Forbidden Area


The area within 2mm from the insulation area is structurally week for the pressure, espcially for pen use. The film may be forcibly bent and may cause defection. This area must be protected by the bezel and input must be avoided.


§ Air Vent


Most of the touchscreens have the air vent to equalize the inside air pressure to the outside one. The air vent must be open and liquid contact must be avoided as the liquid may be absorbed if the lquid is accumilated near the air vent. The top electlode must not be swelled by the air pressure from inside of the case.



6. Warranty

6-1. Warranty Period

- § The warranty period is limited to 1 year from the date of shipping. The warranty for the initial defection such as appearance defection is limited to 1 month.
- § Any defected parts under proper use will be examined by the supplier and replaced by the new parts if the defection is considered to be caused by the supplier.
- § The replacement is subject to be included in the next lot.

6-2. Warranty Target

- § The warranty only covers the product itself and does not cover any damage to others caused by using this product. Onsite repair or replacement is not supported.
- § We will do our best for delivery problem and product defections, but the warranty for the production line is not covered.
- § Resistive touchscreens are structurally not repairable. All defections are subject to replacement.

6-3. Warranty Exceptions

Following conditions are not covered with the warranty and subject to charge.

- § Any malfunctions and damages during transportation and transfer by the user.
- § Any malfunctions and damages caused by a natural disaster or a fire.
- § Any malfunctions and damages caused by static electricity
- § Any malfunctions and damages caused by the failure of the associated equipment.
- § If the product is remodeled, disassembled or repaired by the user.
- § If the product is glued onto the equipment and uninstalled.
- § Any malfunctions and damages caused by an improper usage and handling against the specifications and notes.

6-4. Tools

- § To maintain the quality, the printing screens and the die-cut plates are generally limited to use up to 1 year. Reorders after 1 year from the initial order or from the last renewal are subject to the tooling charge for replacing the printing screens and the die-cut plates. Reorders for the discontinued standard parts are also subject to tooling charge.
- § All the tools, such as CAD data (except for the drawing for approval), block copies (films), printing screens, and die-cut plates are not to be provided for administrative purpose.

6-5. Changes

- § Because of the manufacturing process, changing the dimensions, circuit pattern, and the tail position requires replacing most of the tools and is subject to high tooling charge. Please be careful when ordering and approving the drawing.
- § Circuit pattern and the materials that does not affect the environmental, electrical, and mechanical characteristics such as film, glass, ink and glue are subject to change for the supplier's reason or for improvement within the specifications.
- § Standard products are subject to change for improvement without notice.

7. Revision history

Rev1 (April 15, 1998)

Initial release

Rev2 (June 1, 1999)

The overall revision by specification review.

Rev3 (April 1, 2002)

The address in the office was changed by the move.

Rev4 (August 16, 2002)

1-4. Activation Force is changed "50g± 30g" to "0.5N±0.3".

1-4.Light Transmission is changed 76% to 80%(TYP).

Rev5 (September 3, 2002)

- 1-3. Operating Temperature is changed "0°C to 60°C" to "-20°C to 70°C".
- 1-3. Storing Temperature is changed "-20°C to 70°C" to "-40°C to 80°C"
- 1-4. Operating Life is changed "1,000,000 hits" to "10,000,000 hits".
- 1-5.Linearity is changed "Under $\pm 2\%$ " to "Under $\pm 1\%$ (typical value)".

Rev6 (June 28, 2004)

- 1-3. Operating Humidity is changed "Less than 90%RH (no condensation)" to "-20°C to 60°C Less than 90%RH (no condensation) Exceeding 60°C 133.8g/m³ (no condensation)".
- 1-3. Storing Humidity is changed "Less than 95%RH (no condensation)" to "-40°C to 60°C Less than 95%RH (no condensation), Exceeding 60°C 142.9g/m³ (no condensation)".
- 1-5.Maximum Voltage is changed "DC5V" to "DC6V".
- 1-5.Linearity is changed "Under ±1% (typical value)" to "Under ±2% (Under ±1% (typical value))".

Rev7 (October 15, 2004)

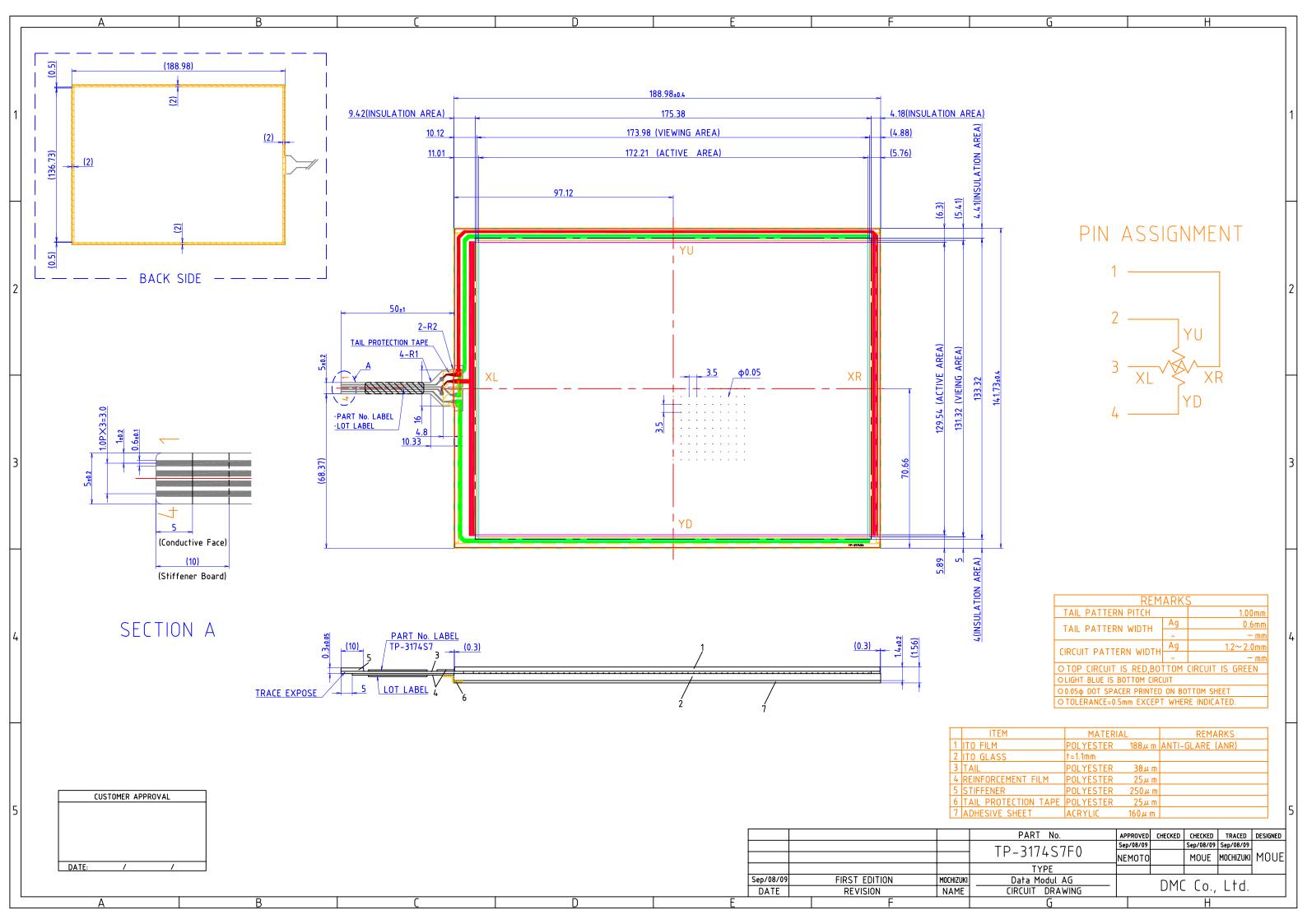
4-4. Electrical & Software Notice: Changed "FIT-10 series" to "TSC-10 series".

Rev8 (April 7, 2005)

Added Item4 Recommended Connector.

Rev9 (September 6, 2005)

2-3. Mechanical Characteristics: Added Operating Life Test (Pen).


Rev10 (November 10, 2006)

The specification item name was changed.

- 1-3. "Storing Temperature" to "Storage Temperature"
- 1-3. "Storing Humidity" to "Storage Humidity"
- 1-4."Operating Load" to "Activation Force"
- 1-4."Light Transmissivity" to "Light Transmittance"
- 1-4."Top Surface Hardness" to "Surface Hardness"
- 2-3."Operating Load Test" to "Activation Force Test"
- 2-3."Operating Load" to "Activation Force"
- 3-1."Operationg Load" to "Activation Force"
- 1-4. Operating Force is changed "0.5N±0.3N" to "0.05N to 0.8N".
- 1-5.Insulation Resistance is changed "Over 100M Ω at 25V" to "Over 20M Ω at 25V".
- 1-6.Tip, crack: Deleted "Applied only in the Active Area. Scratches or dusts in the outside of the Active Area are acceptable unless the electrical characteristics are affected.".
- 2-3. § Operating Life Test (Pen) Load: 300g to 250g
- 5-5. § Cushion: Added an installation position of a cushion.
- 7.Added Revision History.

Rev11 (March 23, 2010)

- 1-6. Appearance specification was revised. Characters of scratch/dust were classified into Circular and Linear. The total acceptable number of scratch/dust was added.
- 2-3. Unit of Load (g) changed to (N) to unify the unit
- 2-3. Operating Life Test (Finger) Activation Force, Within $\pm 50\%$ of the specification \rightarrow Must satisfy the specification. (Clerical error was corrected)
- 2-3. Operating Life Test (Pen) Activation Force, Within $\pm 50\%$ of the specification \rightarrow Must satisfy the specification. (Clerical error was corrected)
- 3-1. Temperature Condition Cold Test $-30^{\circ}\text{C} \rightarrow -40^{\circ}\text{C}$ (Clerical error was corrected)
- 3-1. Activation Force, Within $\pm 50\%$ of the specification. \rightarrow Must satisfy the specification (Clerical error was corrected)

ALL TECHNOLOGIES. ALL COMPETENCIES. ONE SPECIALIST.

DATA MODUL AG Landsberger Straße 322 DE-80687 Munich Phone: +49-89-56017-0 DATA MODUL WEIKERSHEIM GMBH Lindenstraße 8 DE-97990 Weikersheim Phone: +49-7934-101-0

More information and worldwide locations can be found at