SPECIFICATION ### G121ACE-LH1 12.1" - SVGA - LVDS Version: 1.0 Date: 19.08.2022 Note: This specification is subject to change without prior notice | Tentative Specification | |---------------------------| | Preliminary Specification | | Approval Specification | # MODEL NO.: G121ACE SUFFIX: LH1 | Customer: | | |--|---------------------------| | APPROVED BY | SIGNATURE | | Name / Title Note | | | Please return 1 copy for you signature and comments. | ır confirmation with your | | Approved By | Checked By | Prepared By | |--------------|------------|-------------| | Matt.lc.chen | Sen.lin | Miyabi.ko | Version 1.0 4 August 2022 1 / 40 # **CONTENTS** | 1. GENERAL DESCRIPTION | 5 | |---|----| | 1.1 OVERVIEW | 5 | | 1.2 FEATURE | 5 | | 1.3 APPLICATION | 5 | | 1.4 GENERAL SPECIFICATIONS | 5 | | 1.5 MECHANICAL SPECIFICATIONS | 6 | | 2. ABSOLUTE MAXIMUM RATINGS | 7 | | 2.1 ABSOLUTE RATINGS OF ENVIRONMENT | 7 | | 2.2 ELECTRICAL ABSOLUTE RATINGS | 8 | | 2.2.1 TFT LCD MODULE | 8 | | 2.2.2 BACKLIGHT UNIT | 8 | | 3. ELECTRICAL CHARACTERISTICS | 9 | | 3.1 TFT LCD MODULE | 9 | | 3.2 BACKLIGHT UNIT | 11 | | 4. BLOCK DIAGRAM | 12 | | 4.1 TFT LCD MODULE | | | 5. INPUT TERMINAL PIN ASSIGNMENT | | | 5.1 TFT LCD MODULE | | | 5.2 BACKLIGHT UNIT(Converter connector pin) | | | 5.3 COLOR DATA INPUT ASSIGNMENT | | | 6. INTERFACE TIMING | | | 6.1 INPUT SIGNAL TIMING SPECIFICATIONS | | | 6.2 POWER ON/OFF SEQUENCE | | | 6.3 The INPUT DATA FORMAT | | | 7. OPTICAL CHARACTERISTICS | | | 7.1 TEST CONDITIONS | | | 7.2 OPTICAL SPECIFICATIONS | | | 8. RELIABILITY TEST CRITERIA | | | 9. PACKAGING | | | 9.1 PACKING SPECIFICATIONS | | | 9.2 PACKING METHOD | | | 9.3 UN-PACKING METHOD | | | 10. DEFINITION OF LABELS | | | 10.1 INX MODULE LABEL | | | 11. PRECAUTIONS | | | 11.1 ASSEMBLY AND HANDLING PRECAUTIONS | | | 11.2 STORAGE PRECAUTIONS | 29 | | #1 m370 -B | | |---------------------------------------|------| | 11.3 OTHER PRECAUTIONS | . 30 | | 12. MECHANICAL CHARACTERISTICS | . 31 | | Appendix . SYSTEM COVER DESIGN NOTICE | | Version 1.0 4 August 2022 3 / 40 ### **REVISION HISTORY** | Version | Date | Page | Description | |---------|-------------|---------------|--| | Ver 0.0 | Mar,16,2022 | All | Tentative Spec was first issued. | | Ver 0.1 | Apr,26,2022 | 9
13
17 | Modify Power Supply Current white&Black. Modify pin description. Modify Vertical/ Horizontal Display Term the max value of Total & Blank. | | Ver 1.0 | Aug,4,2022 | 32 | Add connector cover. | Version 1.0 4 August 2022 4 / 40 #### 1. GENERAL DESCRIPTION #### 1.1 OVERVIEW G121ACE-LH1 is a 12.1" TFT Liquid Crystal Display module with LED Backlight unit LVDS interface. This module supports 800×600 SVGA AAS mode and can display 262k/16.7M colors . The LED converter for Backlight is built in control board.. #### **1.2 FEATURE** - SVGA (800 x 600 pixels) resolution - PSWG (Panel Standardization Working Group) - Wide operating temperature. - RoHS compliance #### 1.3 APPLICATION - -TFT LCD Monitor - Factory Application - Amusement #### 1.4 GENERAL SPECIFICATIONS | Item | Specification | Unit | Note | |--------------------------|--------------------------|-------|------| | Active Area | 246(H)*184.5(V) | mm | (1) | | Driver Element | a-Si TFT active matrix | - | - | | Pixel Number | 800x R.G.B x 600 | pixel | - | | Pixel Pitch | 0.3075(H)*0.3075(V) | mm | - | | Pixel Arrangement | RGB vertical Stripe | - | - | | Display Colors | 262k/16.7M | color | - | | Display Mode | Normally Black | - | - | | Surface Treatment | AG type, 3H hard coating | - | - | | Module Power Consumption | 8.34W | W | | #### 1.5 MECHANICAL SPECIFICATIONS | Item | | Min. | Тур. | Max. | Unit | Note | | |-------------|---------------|-------|-------|-------|------|------|--| | | Horizontal(H) | 260.0 | 260.5 | 261.0 | mm | | | | Module Size | Vertical(V) | 203.5 | 204.0 | 204.5 | mm | (1) | | | | Depth(D) | 7.9 | 8.4 | 8.9 | mm | | | | Dozel Area | Horizontal | 248.7 | 249 | 249.3 | mm | - | | | Bezel Area | Vertical | 187.2 | 187.5 | 187.8 | mm | | | | Active Area | Horizontal | - | 246 | - | mm | | | | Active Area | Vertical | - | 184.5 | - | mm | | | | Weight | | | 470 | 490 | g | | | Note (1)Please refer to the attached drawings for more information of front and back outline dimensions. #### 2. ABSOLUTE MAXIMUM RATINGS #### 2.1 ABSOLUTE RATINGS OF ENVIRONMENT | ltom | Cumbal | Va | lue | Linit | Note | | |-------------------------------|-----------------|------|------|------------------------|--------|--| | Item | Symbol | Min. | Max. | Unit | | | | Operating Ambient Temperature | T _{OP} | -30 | +85 | $^{\circ}\!\mathbb{C}$ | (1)(2) | | | Storage Temperature | Tst | -30 | +85 | $^{\circ}\!\mathbb{C}$ | (1)(2) | | Note (1) - (a) 90 %RH Max. (Ta <= 39 °C) - (b) Wet-bulb temperature should be 39 °C Max. - (c) No condensation. Note (2) Panel surface temperature should be 0° C min. and 80° C max under Vcc=5.0V, fr =60Hz, typical LED string current, 25° C ambient temperature, and no humidity control . Any condition of ambient operating temperature ,the surface of active area should be keeping not higher than 80° C. #### Relative Humidity (%RH) #### 2.2 ELECTRICAL ABSOLUTE RATINGS #### 2.2.1 TFT LCD MODULE | Item | Symbol | Value | | Unit | Note | | |----------------------|--------|-------|------|-------|------|--| | item | Symbol | Min. | Max. | Offic | Note | | | Power Supply Voltage | VCC | -0.3 | 6 | V | (1) | | | Logic Input Voltage | Vin | -0.3 | 3.6 | V | (1) | | #### 2.2.2 BACKLIGHT UNIT | Itom | Cumbal | Va | lue | Linit | Note | | |-------------------|---------|------|------|-------|----------|--| | Item | Symbol | Min. | Max. | Unit | | | | Converter Voltage | Vi | -0.3 | 18 | V | (1), (2) | | | Enable Voltage | EN | | 5.5 | V | | | | Backlight Adjust | Dimming | | 5.5 | V | | | Note (1) Permanent damage to the device may occur if maximum values are exceeded. Function operation should be restricted to the conditions described under Normal Operating Conditions. Note (2) Specified values are for LED (Refer to 3.2 for further information) #### 3. ELECTRICAL CHARACTERISTICS #### 3.1 TFT LCD MODULE | Doromotor | Parameter | | | Value | | | Note | |--------------------------------|-----------|-----------------|------|-------|--------|-------|------| | Parameter | Symbol | Min. | Тур. | Max. | Unit | Note | | | Power Supply Vol | tage | Vcc | 4.75 | 5.0 | 5.25 | V | - | | Ripple Voltage | Э | V_{RP} | - | - | 300 | mVp-p | | | Inrush Curren | t | Inrush | - | - | 1.5 | Α | (2) | | Dower Supply Current | White | lcc | - | 87.96 | 105.64 | mA | (3)a | | Power Supply Current | Black | ICC | - | 87.88 | 105.5 | mA | (3)b | | LVDS differential inpu | t voltage | V _{id} | 200 | | 600 | mV | | | LVDS common input | voltage | Vic | 1 | 1.2 | 1.4 | V | | | Differential Input Voltage for | "H" Level | | | | 100 | mV | - | | LVDS Receiver Threshold | "L" Level | -100 | | | | mV | - | | Logic High Input Voltage | | VIH | 2.7 | - | 3.4 | V | | | Logic Low Input Voltage | VIL | - | - | 0.3 | V | | | | Terminating Resi | stor | R⊤ | | 100 | | Ohm | - | Note (1)The module should be always operated within above ranges. Note (2)Measurement Conditions: #### VCC rising time is 470μs Note (3) The specified power supply current is under the conditions at Ta = 25 ± 2 °C, DC Current and f_v = 60 Hz, whereas a power dissipation check pattern below is displayed. Active Area #### b. Black Pattern Active Area #### 3 2 BACKI IGHT UNIT Ta = 25 ± 2 °C | Parame | otor | Cymphal | | Value | | Unit | Note | |------------------------|------------------|------------------|--------|-------|------|--|--| | Parame | eter | Symbol | Min. | Тур. | Max. | Offic | Note | | Converter Inp | ut Voltage | Vi | 10.8 | 12 | 13.2 | V_{DC} | (Duty 100%) | | Converter Input F | Ripple Voltage | ViRP | | | 500 | mV | | | Converter Inp | ut Current | li | 0.4 | 0.6 | 0.8 | ADC | @ Vi = 12V
(Duty 100%) | | Converter Inru | sh Current | lirush | | | 3 | Α | @ Vi rising
time=20ms
(Vi=12V) | | Input Power Co | onsumption | Pi | | 7.2 | | W | (1) | | EN Control Level | Backlight on | | 2.0 | 3.3 | 5.0 | V | | | EN Control Level | Backlight off | | 0 | - | 0.3 | V | | | PWM Control Level | PWM High Level | Dimming | 2.0 | 1 | 5.0 | V | | | r www Control Level | PWM Low Level | (E_PWM) | 0 | - | 0.15 | V | | | PWN Noise | Range | VNoise | | | 0.1 | V | | | PWM Control | Frequency | f _{PWM} | 190 | 200 | 20k | Hz | (2) | | DIAMA Discounies of Co | | 5 | - | 100 | % | (2), @
190Hz <f<sub>PWM<1kHz</f<sub> | | | PWM Dimming Co | niioi Duty Katio | - | 20 | - | 100 | % | (2), @
1kHz≦f _{PWM} <20kHz | | LED Life | Time | L _{LED} | 50,000 | | - | Hrs | (3) | Note (1)LED current is measured by utilizing a high frequency current meter as shown below: Note (2) The lifetime of LED is estimated data and defined as the time when it continues to operate under the conditions at Ta = 25 ± 2 °C and Duty 100% until the brightness becomes $\leq 50\%$ of its original value. Operating LED at high temperature condition will reduce life time and lead to color shift. Note (3) At 190 ~1kHz PWM control frequency, duty ratio range is restricted from 5% to 100%. 1K ~20kHz PWM control frequency, duty ratio range is restricted from 20% to 100%. If PWM control frequency is applied in the range from 1KHz to 20KHZ, The "non-linear" phenomenon on the Backlight Unit may be found. So It's a suggestion that PWM control frequency should be less than 1KHz. #### 4. BLOCK DIAGRAM #### 4.1 TFT LCD MODULE #### 5. INPUT TERMINAL PIN ASSIGNMENT #### **5.1 TFT LCD MODULE** | Pin No. | Symbol | Function | Note | |---------|--------|---|--------------| | 1 | VCC | Power supply | | | 2 | VCC | Power supply | | | 3 | REV | Reverse Scan Control, | Note (2).(3) | | | | Low or NC → Normal Mode. | | | | | High → Reverse Scan | | | 4 | NC | No Connection | | | 5 | NC | No Connection | | | 6 | SEL6/8 | LVDS 6/8 bit select function control, | Note (2).(3) | | | | Low or NC → 6 bit Input Mode | | | | | High → 8bit Input Mode | | | 7 | NC | No Connection | | | 8 | NC | No Connection | | | 9 | NC | No Connection | | | 10 | NC | No Connection | | | 11 | NC | No Connection | | | 12 | NC | No Connection | | | 13 | NC | No Connection | | | 14 | GND | Ground | | | 15 | NC | No Connection | | | 16 | NC | No Connection | | | 17 | GND | Ground | | | 18 | NC | No Connection | | | 19 | NC | No Connection | | | 20 | RX3+ | Differential Data Input, CH3 (Positive) | | | 21 | RX3- | Differential Data Input, CH3 (Negative) | | | 22 | RXC+ | Differential Clock Input (Positive) | | | 23 | RXC- | Differential Clock Input (Negative) | | | 24 | GND | Ground | | | 25 | RX2+ | Differential Data Input, CH2 (Positive) | | | 26 | RX2- | Differential Data Input, CH2 (Negative) | | | 27 | RX1+ | Differential Data Input, CH1 (Positive) | | | 28 | RX1- | Differential Data Input, CH1 (Negative) | | | 29 | RX0+ | Differential Data Input, CH0 (Positive) | | | 30 | RX0- | Differential Data Input, CH0 (Negative) | | Note (1) Connector Part No.: STM MSAK24025P30MB or I-PEX 20455-030E-76 or equivalent. User's connector Part No.: I-PEX 20453-030T-03 or equivalent. Note (2) "Low" stands for 0V. "High" stands for 3.3V Note (3) Interface optional pin has internal scheme as following diagram, Customer should keep the interface voltage level requirement which including panel board loading as below. Version 1.0 4 August 2022 13 / 40 ### 5.2 BACKLIGHT UNIT(Converter connector pin) | Pin | Symbol | Description | Remark | |-----|-----------|-------------------------|---| | 1 | NC | Not Connect | | | 2 | Dimming | Backlight Adjust | PWM Dimming
(Hi: 3.3V _{DC} , Lo: 0V _{DC}) | | 3 | EN | Enable pin | 3.3V | | 4 | V_{GND} | Converter ground | Ground | | 5 | Vi | Converter input voltage | 12V | Note (1)Connector Part No.: Cvilux CI4205M2HRD-NH or AECS 50277-00501-002 or equivalent. Note (2)User's connector Part No.: Cvilux CI4205SL000 or equivalent. #### 5.3 COLOR DATA INPUT ASSIGNMENT The brightness of each primary color (red, green and blue) is based on the 6-bit gray scale data input for the color. The higher the binary input, the brighter the color. The table below provides the assignment of color. | | | | | | | | | | D | ata S | Signa | al | | | | | | | | |--------|---------------|----|----|----|----|----|----|----|----|-------|-------|----|----|----|----|----|----|----|----| | | Color | | | Re | ed | | | | | Gre | en | | | | | Bl | ue | | | | | | R5 | R4 | R3 | R2 | R1 | R0 | G5 | G4 | G3 | G2 | G1 | G0 | B5 | B4 | В3 | B2 | B1 | B0 | | | Black | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | Red | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | Green | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | | Basic | Blue | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | | Colors | Cyan | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | | Magenta | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | | | Yellow | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | | | White | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | | Red(0)/Dark | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | Red(1) | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Gray | Red(2) | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Scale | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | | Of | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | | Red | Red(61) | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | Red(62) | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | Red(63) | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | Green(0)/Dark | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | Green(1) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | | Gray | Green(2) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Scale | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | | Of | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | | Green | Green(61) | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | | | Green(62) | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | Green(63) | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | | | Blue(0)/Dark | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | Blue(1) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | | Gray | Blue(2) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | | Scale | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | | Of | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | | Blue | Blue(61) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | | | Blue(62) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | | | Blue(63) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | Note (1) 0: Low Level Voltage, 1: High Level Voltage The brightness of each primary color (red, green and blue) is based on the 8-bit gray scale data input for the color. The higher the binary input the brighter the color. The table below provides the assignment of color versus data input. | | 0.1 | | | | | | | | | | | D | | Sig | nal | | | | | | | | | | | |------------|----------------|----|----|----|----|----|----|----|----|----|----|----|----|-----|-----|---|----|----|----|----|----|----|----|----|----| | | Color | | | | Re | | | | | | | | | een | | | | | | | | ue | | | | | | | R7 | R6 | R5 | | R3 | R2 | R1 | R0 | G7 | G6 | G5 | G4 | G3 | G2 | _ | G0 | B7 | B6 | B5 | B4 | B3 | B2 | B1 | B0 | | | Black | 0 | | | Red | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | . . | Green | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Basic | Blue | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | Colors | Cyan | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | | Magenta | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | | Yellow | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | White | 1 | | | Red(0) / Dark | 0 | | | Red(1) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Gray | Red(2) | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Scale | : | | Of | : | | Red | Red(253) | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 1 | Red(254) | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | Red(255) | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | Green(0)/Dark | 0 | | | Green(1) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Gray | Green(2) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Scale | : | | Of | : | | Green | Green(253) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 010011 | Green(254) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | Green(255) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | Blue(0) / Dark | 0 | | | Blue(1) | 0 | 1 | | Gray | Blue(2) | 0 | 1 | 0 | | Scale | : | | Of | : | | Blue | Blue(253) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | | Dias | Blue(254) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | | | Blue(255) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | Note (1)0: Low Level Voltage, 1: High Level Voltage #### 6 INTERFACE TIMING #### **6.1 INPUT SIGNAL TIMING SPECIFICATIONS** The input signal timing specifications are shown as the following table and timing diagram. | Signal | Item | Symbol | Min. | Тур. | Max. | Unit | Note | |----------------------------|--------------------------------------|------------------------|------|------|------|------|-------------------------| | | Frequency | Fc | 34 | 40 | 48.3 | MHz | - | | | Period | Tc | 20.7 | 25 | 29. | ns | | | 1) (DO OL) | Input Clock to data skew | TLVCCS | - | - | 0.25 | UI | (a) | | LVDS Clock | Spread spectrum modulation range | F _{clkin_mod} | -1.5 | | 1.5 | % | (b) | | | Spread spectrum modulation frequency | F _{SSM} | 25 | | 90 | KHz | (b) | | | Frame Rate | Fr | 60 | 60 | 60 | Hz | $Tv=T_{vd}+T_{vb}$ | | Vertical Display | Total | Tv | 610 | 628 | 792 | Th | ı | | Term | Active Display | T_{vd} | 600 | 600 | 600 | Th | - | | | Blank | T_{vb} | 10 | 28 | 192 | Th | - | | | Total | Th | 960 | 1056 | 1060 | Tc | $T_h = T_{hd} + T_{hb}$ | | Horizontal Display
Term | Active Display | T _{hd} | 800 | 800 | 800 | Тс | - | | IGIIII | Blank | T _{hb} | 160 | 256 | 260 | Tc | - | Note (1) Because this module is operated by DE only mode, Hsync and Vsync input signals should be set to low logic level or ground. Otherwise, this module would operate abnormally. Note (2) The Tv(Tvd+Tvb) must be integer, otherwise, the module would operate abnormally. #### **INPUT SIGNAL TIMING DIAGRAM** #### **TIMING DIAGRAM of LVDS** Note (a) Input Clock to data skew is defined as below figures. Version 1.0 4 August 2022 18 / 40 Note (b) The SSCG (Spread spectrum clock generator) is defined as below figures. #### **6.2 POWER ON/OFF SEQUENCE** To prevent a latch-up or DC operation of LCD assembly, the power on/off sequence should be as the diagram below. Version 1.0 4 August 2022 19 / 40 | Darameter | | Units | | | |-----------|-----|-------|-----|--------| | Parameter | Min | Тур | Max | Office | | T1 | 0.5 | - | 10 | ms | | T2 | 0 | - | 50 | ms | | T3 | 0 | - | 50 | ms | | T4 | 500 | - | - | ms | | T5 | 450 | - | - | ms | | T6 | 200 | - | - | ms | | Т7 | 10 | - | 100 | ms | | Т8 | 10 | - | - | ms | | Т9 | 10 | 1 | - | ms | | T10 | 20 | - | 50 | ms | #### Note: - (1) The supply voltage of the external system for the module input should be the same as the definition of Vcc. - (2) When the backlight turns on before the LCD operation of the LCD turns off, the display may momentarily become abnormal screen. - (3) In case of VCC = off level, please keep the level of input signals on the low or keep a high impedance. - (4) T4 should be measured after the module has been fully discharged between power off and on period. - (5) Interface signal shall not be kept at high impedance when the power is on. - (6) INX won't take any responsibility for the products which are damaged by the customers not following the Power Sequence. - (7) There might be slight electronic noise when LCD is turned off (even backlight unit is also off). To avoid this symptom, we suggest "Vcc falling timing" to follow "T7 spec". #### **6.3 The INPUT DATA FORMAT** #### SEL 6/8="Low" for 6 Bits LVDS #### SEL 6/8="High" for 8 Bits LVDS Note (1) R/G/B data 7: MSB, R/G/B data 0: LSB #### Note (2) Please follow PSWG | Signal Name | Description | Remark | |-------------|--------------------|--| | R7 | Red Data 7 (MSB) | Red-pixel Data | | R6 | Red Data 6 | Each red pixel's brightness data consists of these | | R5 | Red Data 5 | 8 bits pixel data. | | R4 | Red Data 4 | | | R3 | Red Data 3 | | | R2 | Red Data 2 | | | R1 | Red Data 1 | | | R0 | Red Data 0 (LSB) | | | G7 | Green Data 7 (MSB) | Green-pixel Data | | G6 | GreenData 6 | Each green pixel's brightness data consists of these | | G5 | GreenData 5 | 8 bits pixel data. | | G4 | GreenData 4 | 187-50 orderendo di Magai-order-orderagigatoso esentido | | G3 | GreenData 3 | | | G2 | GreenData 2 | | | G1 | GreenData 1 | | | G0 | GreenData 0 (LSB) | | | B7 | Blue Data 7 (MSB) | Blue-pixel Data | | B6 | Blue Data 6 | Each blue pixel's brightness data consists of these | | B5 | Blue Data 5 | 8 bits pixel data. | | B4 | Blue Data 4 | To the order to the control of c | | B3 | Blue Data 3 | | | B2 | Blue Data 2 | | | B1 | Blue Data 1 | | | B0 | Blue Data 0 (LSB) | | | RXCLKIN+ | LVDS Clock Input | | | RXCLKIN- | | | | DE | Display Enable | | | VS | Vertical Sync | | | HS | Horizontal Sync | | #### 7. OPTICAL CHARACTERISTICS #### 7.1 TEST CONDITIONS | Item | Symbol | Value | Unit | |---------------------|----------|------------------------------|-----------| | Ambient Temperature | Та | 25±2 | оС | | Ambient Humidity | На | 50±10 | %RH | | Supply Voltage | Accordin | ng to typical value and tole | erance in | | Input Signal | "ELEG | CTRICAL CHARACTERIS | STICS" | | PWM Duty Ratio | D | 100 | % | #### 7.2 OPTICAL SPECIFICATIONS The relative measurement methods of optical characteristics are shown here and all items are measured at the center point of screen unless otherwise noted. The following items should be measured under the test conditions described above and stable conditions shown in Note (5). | I | tem | Symbol | Condition | Min. | Тур. | Max. | Unit | Note | | | |---------------|--------------|------------------|---|-------|-------|-------|------|----------|--|--| | | Red | Rx | | 0.599 | 0.649 | 0.699 | | | | | | | Red | Ry | | 0.290 | 0.340 | 0.390 | | | | | | | Green | Gx | | 0.270 | 0.320 | 0.370 | | (1), (5) | | | | Color | Green | Gy | | 0.556 | 0.606 | 0.656 | | | | | | Chromaticity | Blue | Bx | θX=0°, θY =0° | 0.099 | 0.149 | 0.199 | _ | (1), (3) | | | | | Dide | Ву | Grayscale Maximum | 0.005 | 0.055 | 0.105 | | | | | | | White | Wx | | 0.263 | 0.313 | 0.363 | | | | | | | vviile | Wy | | 0.279 | 0.329 | 0.379 | | | | | | Center Lumina | nce of White | Lc | | 400 | 450 | - | - | (4), (5) | | | | Contrast | Ratio | CR | | 700 | 1000 | ı | - | (2), (5) | | | | Respons | e Time | T _R | $\theta_x=0^\circ, \ \theta_Y=0^\circ$ | - | 13 | 18 | - | (3) | | | | Respons | e mine | T _F | θχ-0 , θΥ -0 | - | 12 | 17 | - | (3) | | | | White Va | riation | δW | $\theta_x=0^\circ$, $\theta_Y=0^\circ$ | 70 | 80 | - | % | (5), (6) | | | | | Horizontal | θ _x + | | 80 | 89 | - | | | | | | Viewing Angle | Tionzontai | θх- | | 80 | 89 | - | Deg. | (1), (5) | | | | | Vertical | θy+ | | 80 | 89 | - | Deg. | (1), (3) | | | | | vortical | θy- | | 80 | 89 | - | | | | | #### Definition: Grayscale Maximum: Grayscale 255 (10 bits: grayscale 1023; 8 bits: grayscale 255; 6 bits: grayscale 63) White: Luminance of Grayscale Maximum (All R,G,B) Black: Luminance of grayscale 0 (All R,G,B) Note (1)Definition of Viewing Angle (θx , θy): Note (2)Definition of Contrast Ratio (CR): The contrast ratio can be calculated by the following expression at center point. Contrast Ratio (CR) = White / Black Note (3)Definition of Response Time (TR, TF): Note (4) Definition of Luminance of White (L_C): Measure the luminance of White at center point. #### Note (5) Measurement Setup: The LCD module should be stabilized at given temperature to avoid abrupt temperature change during measuring. In order to stabilize the luminance, the measurement should be executed after lighting Backlight for 40 minutes in a windless room. The measurement placement of module should be in accordance with module drawing. #### Note (6) Definition of White Variation (δW): Measure the luminance of White at 9 points. Luminance of White: L(X), where X is from 1 to 9. $$\delta W = \frac{\text{Minimum } [L(1) \text{ to } L(9)]}{\text{Maximum } [L(1) \text{ to } L(9)]} \times 100\%$$ #### Horizontal Line Version 1.0 4 August 2022 **24 / 40** #### 8. RELIABILITY TEST CRITERIA | Test Item | Test Condition | Note | |---|--|--------------------| | High Temperature Storage Test | 85℃, 240 hours | | | Low Temperature Storage Test | -30°C, 240 hours | | | Thermal Shock Storage Test | -30°C, 0.5 hour ←→85°C, 0.5 hour; 100cycles, 1 hour/cycle) | (1) (2) | | High Temperature Operation Test | 85℃, 240 hours | (1),(2)
(4),(5) | | Low Temperature Operation Test | -30°ℂ, 240 hours | ()/() | | High Temperature & High Humidity Operation Test | 60℃, RH 90%, 240 hours | | | | 150pF, 330 Ω , 1 sec/cycle | | | ESD Test (Operation) | Condition 1 : panel contact, ±8 KV | (1), (4) | | | Condition 2 : panel non-contact ±15 KV | | | Shook (Non Operating) | 200G, 2ms, half sine wave, 1 time for \pm X, \pm Y, \pm Z | | | Shock (Non-Operating) | direction | (2), (3) | | Vibration (Non-Operating) | 1.5G, 10 ~ 300 Hz sine wave, 10 min/cycle, 3 cycles each X, Y, Z direction | (2), (3) | - Note (1)There should be no condensation on the surface of panel during test, - Note (2) Temperature of panel display surface area should be 80°C Max. - Note (3) At testing Vibration and Shock, the fixture in holding the module has to be hard and rigid enough so that the module would not be twisted or bent by the fixture. - Note (4) In the standard conditions, there is no function failure issue occurred. All the cosmetic specification is judged before reliability test. - Note (5) Before cosmetic and function test, the product must have enough recovery time, at least 24 hours at room temperature. #### 9. PACKAGING #### 9.1 PACKING SPECIFICATIONS -carton - (1) 18pcs LCD modules / 1 Box - (2) Box dimensions: 465 (L) X 362 (W) X 314 (H) mm - (3) Weight: approximately 10.9Kg (18 modules per box) #### 9.2 PACKING METHOD Figure. 9-1 Packing method carton label Figure. 9-2 Packing method #### 9.3 UN-PACKING METHOD Figure. 9-3 UN-Packing method #### 10. DEFINITION OF LABELS #### **10.1 INX MODULE LABEL** The barcode nameplate is pasted on each module as illustration, and its definitions are as following explanation. Note (1) Safety Compliance(UL logo) will open after C1 version. (a) Model Name: G121ACE-LH1 (b) * * * * : Factory ID Serial ID includes the information as below: (a) Manufactured Date: Year: 1~9, for 2021~2029 Month: 1~9, A~C, for Jan. ~ Dec. Day: 1~9, A~Y, for 1^{st} to 31^{st} , exclude I , O and U (b) Revision Code: cover all the change (c) Serial No.: Manufacturing sequence of product #### 11 PRECAUTIONS #### 11.1 ASSEMBLY AND HANDLING PRECAUTIONS - (1) The module should be assembled into the system firmly by using every mounting hole. Be careful not to twist or bend the module. - (2) While assembling or installing modules, it can only be in the clean area. The dust and oil may cause electrical short or damage the polarizer. - (3) Use fingerstalls or soft gloves in order to keep display clean during the incoming inspection and assembly process. - (4) Do not press or scratch the surface harder than a HB pencil lead on the panel because the polarizer is very soft and easily scratched. - (5) If the surface of the polarizer is dirty, please clean it by some absorbent cotton or soft cloth. Do not use Ketone type materials (ex. Acetone), Ethyl alcohol, Toluene, Ethyl acid or Methyl chloride. It might permanently damage the polarizer due to chemical reaction. - (6) Wipe off water droplets or oil immediately. Staining and discoloration may occur if they left on panel for a long time. - (7) If the liquid crystal material leaks from the panel, it should be kept away from the eyes or mouth. In case of contacting with hands, legs or clothes, it must be washed away thoroughly with soap. - (8) Protect the module from static electricity, it may cause damage to the C-MOS Gate Array IC. - (9) Do not disassemble the module. - (10) Do not pull or fold the lamp wire. - (11) Pins of I/F connector should not be touched directly with bare hands. #### 11.2 STORAGE PRECAUTIONS - (1)When storing for a long time, the following precautions are necessary. - (a) Store them in a dark place. Do not expose the module to sunlight or fluorescent light. Keep the temperature between 5°C and 30°C at humidity 50+-10%RH. - (b) The polarizer surface should not come in contact with any other object. - (c) It is recommended that they be stored in the container in which they were shipped. - (d) Storage condition is guaranteed under packing conditions. - (e) The phase transition of Liquid Crystal in the condition of the low or high storage temperature will be recovered when the LCD module returns to the normal condition - (2) High temperature or humidity may reduce the performance of module. Please store LCD module within the specified storage conditions. - (3) It is dangerous that moisture come into or contacted the LCD module, because the moisture may damage LCD module when it is operating. - (4) It may reduce the display quality if the ambient temperature is lower than 10 °C. For example, the response time will become slowly, and the starting voltage of lamp will be higher than the room temperature. #### 11.3 OTHER PRECAUTIONS - (1) Normal operating condition - (a) Display pattern: dynamic pattern (Real display) (Note) Long-term static display can cause image sticking. (2) Abnormal condition just means conditions except normal condition. #### 12. MECHANICAL CHARACTERISTICS Version 1.0 4 August 2022 32 / 40 #### **Appendix. SYSTEM COVER DESIGN NOTICE** Version 1.0 4 August 2022 35 / 40 Version 1.0 4 August 2022 **36 / 40** Version 1.0 4 August 2022 37 / 40 Version 1.0 4 August 2022 38 / 40 Version 1.0 4 August 2022 39 / 40 ### ALL TECHNOLOGIES. ALL COMPETENCIES. ONE SPECIALIST. DATA MODUL AG Landsberger Straße 322 DE-80687 Munich Phone: +49-89-56017-0 DATA MODUL WEIKERSHEIM GMBH Lindenstraße 8 DE-97990 Weikersheim Phone: +49-7934-101-0 More information and worldwide locations can be found at