

#### **Doc.Number:**

- $\hfill\Box$  Tentative Specification
- Preliminary Specification
- ☐ Approval Specification

# MODEL NO: GK173VB-01B Rev.A1.V1 Mini LED

| APPROVED BY                                          | SIGNATURE                 |
|------------------------------------------------------|---------------------------|
| Note:                                                |                           |
| Please return 1 copy for you signature and comments. | ur confirmation with your |

| Approved By | Checked By | Prepared By |
|-------------|------------|-------------|
|             |            | IWEN.HUANG  |



## **CONTENTS**

| 1.GENERAL DESCRIPTION                              |          |
|----------------------------------------------------|----------|
| 1.1 OVERVIEW                                       | 4        |
| 1.2 GENERAL SPECIFICATIONS                         | 4        |
| 2. MECHANICAL SPECIFICATION                        |          |
| 2.1 CONNECTOR TYPE                                 | 5        |
| 3. ABSOLUTE MAXIMUM RATINGS                        |          |
| 3.1 ELECTRICAL ABSOLUTE RATINGS                    | 6        |
| 3.1.1 TFT LCD MODULE                               |          |
| 4. ELECTRICAL SPECIFICATIONS                       | 6        |
| 4.1 FUNCTION BLOCK DIAGRAM                         | 6        |
| 4.2. INTERFACE CONNECTIONS                         | 7        |
| 4.3 ELECTRICAL CHARACTERISTICS                     |          |
| 4.3.1 LCD ELETRONICS SPECIFICATION                 | <u>C</u> |
| 4.3.2 BACKLIGHT UNIT                               |          |
| 4.4 DISPLAY PORT INPUT SIGNAL TIMING SPECIFICATION |          |
| 4.4.1 ELECTRICAL SPECIFICATIONS                    |          |
| 4.4.2 eDP 1.4 Interface Data Format                |          |
| 4.5 DISPLAY TIMING SPECIFICATIONS                  | _        |
| 4.5.1 Frame Rate:60HZ                              |          |
| 4.6 POWER ON/OFF SEQUENCE                          |          |
| 5. OPTICAL CHARACTERISTICS                         |          |
| 5.1 TEST CONDITIONS                                |          |
| 5.2 OPTICAL SPECIFICATIONS                         |          |
| 6. RELIABILITY TEST ITEM                           |          |
| 7. PACKING                                         |          |
| 7.1 MODULE LABEL                                   |          |
| 7.2 CARTON                                         |          |
| 8. PRECAUTIONS                                     | 24       |
| 8.1 HANDLING PRECAUTIONS                           | 24       |
| 8.2 STORAGE PRECAUTIONS                            |          |
| 8.3 OPERATION PRECAUTIONS                          |          |
| Appendix. EDID DATA STRUCTUR                       |          |
| Appendix. SYSTEM COVER DESIGN GUIDANC              |          |
| Appendix. LCD MODULE HANDLING MANUAL               | 41       |



### **REVISION HISTORY**

| Version | Date      | Page | Description |
|---------|-----------|------|-------------|
| 1.1     | 2024.8.26 | ALL  | -           |
|         |           |      |             |
|         |           |      |             |
|         |           |      |             |
|         |           |      |             |
|         |           |      |             |
|         |           |      |             |
|         |           |      |             |
|         |           |      |             |
|         |           |      |             |
|         |           |      |             |



#### 1.GENERAL DESCRIPTION

#### 1.1 OVERVIEW

**GK173VB-01B** is a Color Active Matrix Liquid Crystal Display composed of a TFT LCD panel, a driver circuit, and LED backlight system. The screen format is intended to support the 16:9 UHD, 3840(H) x2160(V) screen and with LED backlight driving circuit. All input signals are eDP(Embedded DisplayPort) interface compatible.

#### 1.2 GENERAL SPECIFICATIONS

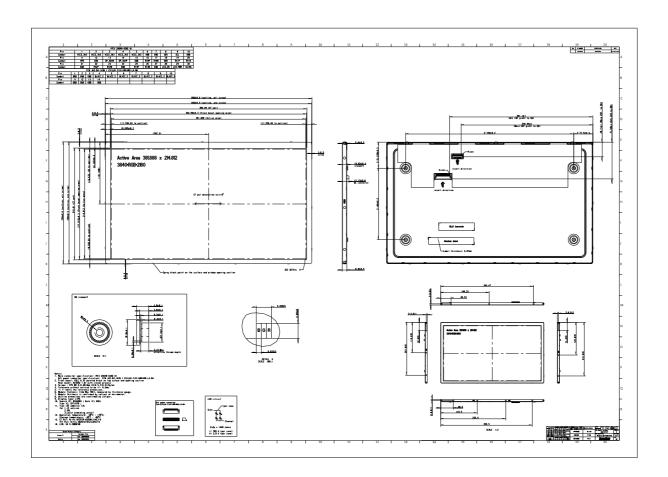
| Item                                              | Specification                             | Unit                   | Note |
|---------------------------------------------------|-------------------------------------------|------------------------|------|
| Screen Size                                       | 17.3" (diagonal)                          | inch                   | -    |
| Driver Element                                    | LTPS TFT active matrix                    | -                      | -    |
| Pixel Number                                      | 3840x R.G.B. x 2160                       | pixel                  | -    |
| Pixel Pitch                                       | 0.09945(H) x 0.09945(V)                   | mm                     | -    |
| Pixel Arrangement                                 | RGB vertical stripe                       | -                      | -    |
| Contrast Ratio                                    | 12,000:1 typ                              |                        |      |
| Transmissive mode                                 | Normally black                            | -                      | -    |
| SurfaceTreatment                                  | HC                                        |                        | -    |
| Luminance, White                                  | L255 1300 nits(min)                       | nits                   | (2)  |
| ElectricalInterface                               | eDP1.4                                    |                        |      |
| GlassThickness(LC<br>M)                           | 0.5+0.5                                   | mm                     |      |
| Frame Rate                                        | 60                                        | HZ                     |      |
| Power Consumption (include LED driver efficiency) | Total 33.385 W (Max.) @ cell 2.9 W (Max.) | W                      | (1)  |
| Back Light Units                                  | V=8.5V / I=3.75A                          |                        | (3)  |
| LCD Units eletronics                              | V=3.3V / I=0.718A                         |                        |      |
| LED Zone size                                     | 4.01 * 3.64                               | mm                     | 2S2P |
| Operating Temperature                             | -20~70                                    | $^{\circ}\!\mathbb{C}$ |      |
| Storage Temperature                               | -30~80                                    | $^{\circ}\mathbb{C}$   |      |

Note 1) The specified power consumption (with converter efficiency) is under the conditions at VCCS\_3V3 = 3.3V, fv = 60Hz, BLVCC\_S = 8.5 V, HDR off and Ta = 25  $\pm$  2 °C, whereas white pattern is displayed with nVidia RTX3080 system, Source IC:NT66969, LED driver part number:MBI6334.

Note (2) Optical pattern is displayed with U-JIG System

Note (3) LED only

#### 2. MECHANICAL SPECIFICATION


|           | Item                           | Min.  | Тур.    | Max.  | Unit | Note   |
|-----------|--------------------------------|-------|---------|-------|------|--------|
|           | Horizontal (H,w/o screw)       | 405   | 405.5   | 406   | mm   |        |
|           | Vertical (V,w/o screw)         | 237.5 | 238     | 238.5 | mm   | (1)(2) |
| NA - dod- | Horizontal (H,w/i screw)       |       | 406     | -     | mm   |        |
| SIZE      | Vertical (V,w/i screw)         | -     | 239     | -     | mm   |        |
|           | Thickness (T,w/o standoff)     | -     | 8.9     | 9.4   | mm   |        |
|           | Thickness (T,w/i standoff)     | -     | 10.82   | -     | mm   |        |
|           | Thickness (T,w/i BL connector) | -     | 13.17   | -     | mm   |        |
| Active    | Horizontal                     | -     | 381.888 | -     | mm   |        |
| Area      | Vertical                       | -     | 214.812 | -     | mm   |        |
|           | Weight                         | -     | -       | 1150  | g    |        |



Note (1) Please

refer to the attached drawings for more information of front and back outline dimensions.

Note (2) Dimensions are measured by caliper.



#### 2.1 CONNECTOR TYPE

Please refer appendix outline drawing for detail design.

Main Connector Part No.: I-PEX 20849-030E(30pin) >

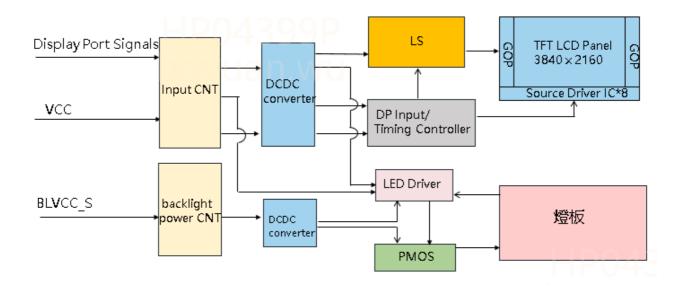
Backlight power connector:

First:JH2-D4-143N(14 pin), second:CI0114M1HR0-LA-NH(14pin

#### 3. ABSOLUTE MAXIMUM RATINGS

#### 3.1 ELECTRICAL ABSOLUTE RATINGS

#### 3.1.1 TFT LCD MODULE


| ltem                             | Symbol   | Value |      | Unit  | Note       |
|----------------------------------|----------|-------|------|-------|------------|
| Kem                              | Cymbol   | Min.  | Max. | Offic | 14010      |
| Power Supply Voltage             | VCCS_3V3 | 3.0   | 3.6  | V     | (1)        |
| Converter Input Voltage          | BLVCC_S  | 8.0   | 9.0  | V     | (1)        |
| Converter Control Signal Voltage | LED_PWM, | 3.1   | 3.5  | V     | 3.3V +/-5% |
| Converter Control Signal Voltage | LED_EN   | 3.1   | 3.5  | V     | 3.3V +/-5% |

Note

- (1) Stresses beyond those listed in above "ELECTRICAL ABSOLUTE RATINGS" may cause permanent damage to the device. Normal operation should be restricted to the conditions described in "ELECTRICAL CHARACTERISTICS".
- (2) There is no limitation about applying VCCS\_3V3 without BLVCC\_S and no limitation on power-up sequence.
- (3) There is no limitation about applying BLVCC\_S without VCCS\_3V3 and no limitation on power-up sequence.

#### 4. ELECTRICAL SPECIFICATIONS

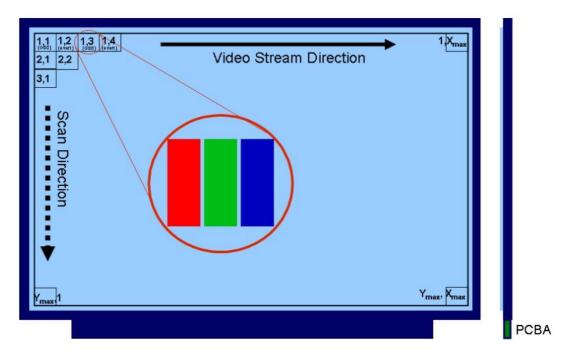
#### **4.1 FUNCTION BLOCK DIAGRAM**





#### 4.2. INTERFACE CONNECTIONS

#### Main connector PIN ASSIGNMENT

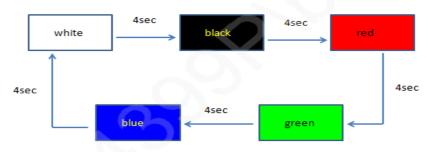

| Pin | Symbol   | Description                             | Remark    |
|-----|----------|-----------------------------------------|-----------|
| 1   | AGING    | Aging test                              |           |
| 2   | LED_PWM  | PWM signal pin                          |           |
| 3   | LED_EN   | LED On / Off                            |           |
| 4   | GND      | Ground                                  |           |
| 5   | RX3N     | eDP differential data3 input (Negative) |           |
| 6   | RX3P     | eDP differential data3 input (Positive) |           |
| 7   | GND      | Ground                                  |           |
| 8   | RX2N     | eDP differential data2 input (Negative) |           |
| 9   | RX2P     | eDP differential data2 input (Positive) |           |
| 10  | GND      | Ground                                  |           |
| 11  | RX1N     | eDP differential data1 input (Negative) |           |
| 12  | RX1P     | eDP differential data1 input (Positive) |           |
| 13  | GND      | Ground                                  |           |
| 14  | RX0N     | eDP differential data0 input (Negative) |           |
| 15  | RX0P     | eDP differential data0 input (Positive) |           |
| 16  | GND      | Ground                                  |           |
| 17  | DP_AUXP  | True Signal Auxiliary Channel           |           |
| 18  | DP_AUXN  | Complement Signal Auxiliary Channel     |           |
| 19  | GND      | Ground                                  |           |
| 20  | HPD      | HPD signal pin                          |           |
| 21  | GND      | Ground                                  |           |
| 22  | SCL      | I2C Pin                                 |           |
| 23  | SDA      | I2C Pin                                 |           |
| 24  | GND      | Ground                                  |           |
| 25  | GND      | Ground                                  |           |
| 26  | VCCS_3V3 | 3.3V input                              | power pin |
| 27  | VCCS_3V3 | 3.3V input                              | power pin |
| 28  | VCCS_3V3 | 3.3V input                              | power pin |
| 29  | VCCS_3V3 | 3.3V input                              | power pin |
| 30  | VCCS_3V3 | 3.3V input                              | power pin |



#### Backlight power connector PIN ASSIGNMEN

| Pin | Symbol  | Description     | Remark    |
|-----|---------|-----------------|-----------|
| 1   | GND     | Ground          |           |
| 2   | GND     | Ground          |           |
| 3   | GND     | Ground          |           |
| 4   | BLVCC_S | backlight power | power pin |
| 5   | BLVCC_S | backlight power | power pin |
| 6   | BLVCC_S | backlight power | power pin |
| 7   | BLVCC_S | backlight power | power pin |
| 8   | BLVCC_S | backlight power | power pin |
| 9   | BLVCC_S | backlight power | power pin |
| 10  | BLVCC_S | backlight power | power pin |
| 11  | GND     | Ground          |           |
| 12  | GND     | Ground          |           |
| 13  | GND     | Ground          |           |
| 14  | GND     | Ground          |           |

Note (1) The first pixel is odd as shown in the following figure.




Note (2) The setting of BIST function are as follows.

| , , | Pin   | Enable | Disable    |
|-----|-------|--------|------------|
|     | AGING | Hi     | Lo or Open |

Hi = High level, Lo = Low level. BIST mod: 3.3V

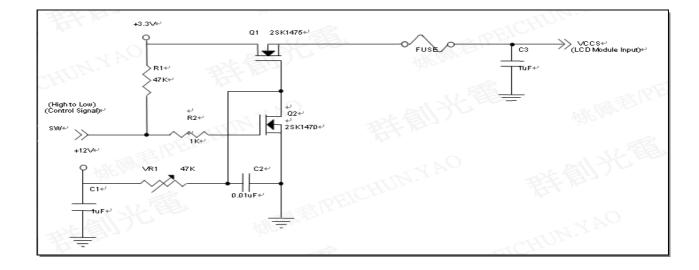
LCD panel self-test (BIST mode) pattern are shown as below image. Each pattern displays 4 sec and recurring.





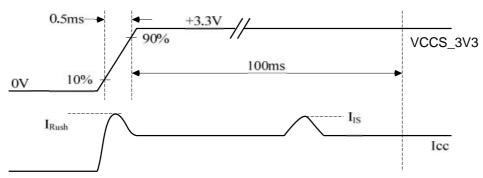
#### 4.3 ELECTRICAL CHARACTERISTICS

#### 4.3.1 LCD ELETRONICS SPECIFICATION

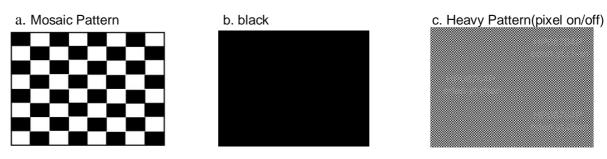

| Parameter            |                | Cumbal          | Value |      |      | Unit  | Note    |
|----------------------|----------------|-----------------|-------|------|------|-------|---------|
|                      |                | Symbol          | Min.  | Тур. | Max. | Offic | Note    |
| Power Supply Voltage |                | VCCS_3V3        | 3.0   | 3.3  | 3.6  | V     | (1)     |
| Ripple Voltage       |                | V <sub>RP</sub> | -     | -    | 100  | mV    | (1)     |
| Inrush Current       | Inrush Current |                 | -     | -    | 1.8  | Α     | (1),(2) |
|                      | Mosaic 8*8     | lcc             |       | TBD  | 1.1  | Α     | (3)a    |
| Power Supply Current | Black          |                 |       | TBD  | 1.1  | Α     | (3)b    |
|                      | (HeavyPattern) |                 |       | TBD  | 1.3  | Α     | (3)c    |
| HPD output voltage   |                |                 | 2.25  | -    | 3.6  | V     |         |
| HPD Impedance        |                | RHPD            | -     | 100K | -    | ohm   | (4)     |
| HPD                  | High Level     |                 | 2.25  | -    | -    | V     | (5)     |
| TIFU                 | Low Level      |                 | 0     | -    | 0.7  | V     | (5)     |

Note (1) The ambient temperature is  $Ta = 25 \pm 2$  °C.

Note (2) Irush: the maximum current when VCCS\_3V3 is rising


lis: the maximum current of the first 100ms after power-on

Measurement Conditions: Shown as the following figure. Test pattern: black.






#### VCCS 3V3 rising time is 0.5ms



Note (3) The specified power supply current is under the conditions at VCCS\_3V3 = 3.3 V, Ta =  $25 \pm 2$  °C, DC Current and  $f_v = 60$  Hz, HDR off whereas a power dissipation check pattern below is displayed.



- Note (4) The specified signals have equivalent impedances pull down to ground in the LCD module respectively. Customers should keep the input signal level requirement with the load of LCD module. Please refer to Note (4) of 4.3.2 LED CONVERTER SPECIFICATION to obtain more information.
- Note (5) When a source detects a low-going HPD pulse, it must be regarded as a HPD event. Thus, the source must read the link / sink status field or receiver capability field of the DPCD and take corrective action.



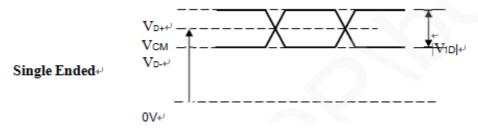
### **4.3.2 BACKLIGHT UNIT**

Ta = 25 ± 2 °C

|                             |                 |          | Value |       | N    |      |
|-----------------------------|-----------------|----------|-------|-------|------|------|
| Parameter                   | Symbol          | Min.     | Тур.  | Max.  | Unit | Note |
| BLU Power Supply<br>Voltage | VL              |          | _     | 5.8   | V    |      |
| BLU Power Supply<br>Current | IL              |          | 4.26  |       | Α    |      |
| Power Consumption           | PL              | -        | _     | 24.72 | W    |      |
| LED Life Time               | L <sub>BL</sub> | (30,000) |       |       | Hrs  |      |

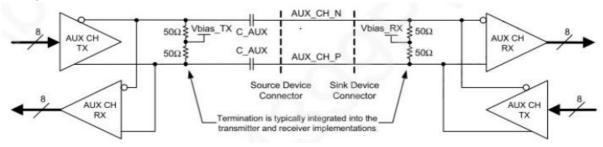
Note:

Parallel:2 strings Series: 2 pcs Partition:1440 area By DC Mode


(1) LED chip Life time, L(70), Ta(25°C) 30,000 hr. (Temp.)

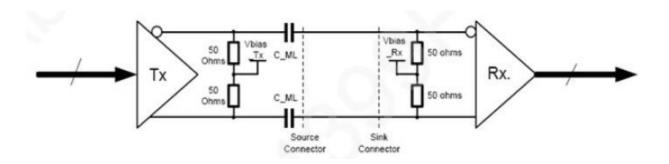
#### 4.4 DISPLAY PORT INPUT SIGNAL TIMING SPECIFICATIONS

#### 4.4.1 ELECTRICAL SPECIFICATIONS


| Parameter                                                 | Symbol       | Min. | Тур. | Max. | Unit | Notes  |
|-----------------------------------------------------------|--------------|------|------|------|------|--------|
| Differential Signal Common Mode Voltage(MainLink and AUX) | VCM          | 0.3  |      | 0.7  | V    | (1)(4) |
| AUX AC Coupling Capacitor                                 | C_Aux_Source | 75-  |      | 200- | nF   | (2)    |

Note (1)Display port interface related AC coupled signals should follow VESA DisplayPort Standard Version1. Revision 1a and VESA Embedded DisplayPort™ Standard Version 1.2. There are many optional items described in eDP1.2. If some optional item is requested. please contact us.




0V

(2) AUX CH consists of an AC-coupled, doubly-terminated differential pair. Manchester-II coding is used as the channel coding for AUX transaction over AUX CH. AUX CH provides a data rate of 1Mbps.





3) The Mainone, two, or four AC-coupled, doubly terminated differential pairs. Eight
link rates are supported (1.62/2.16/2.43/2.7/3.24/4.32/5.4/8.1 Gbps). All enabled lanes must be
operating at the same link rate. There is no dedicated clock channel. The clock is extracted from the
data stream itself that is encoded with ANSI 8b/10b coding rule.



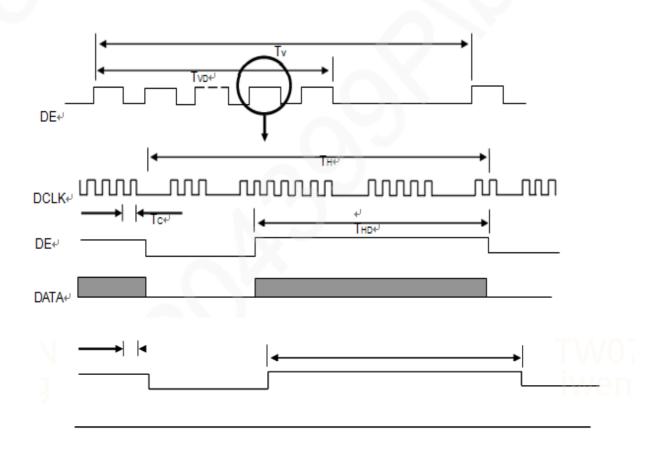
#### 4.4.2 eDP 1.4 Interface Data Format

| Lane 0 | Lane 1 | Lane 2  | Lane 3  |
|--------|--------|---------|---------|
| R0-7:0 | R1-7:0 | R2-7:0  | R3-7:0  |
| G0-7:0 | G1-7:0 | G2-7:0  | G3-7:0  |
| B0-7:0 | B1-7:0 | B2-7:0  | B3-7:0  |
| R4-7:0 | R5-7:0 | R6-7:0  | R7-7:0  |
| G4-7:0 | G5-7:0 | G6-7:0  | G7-7:0  |
| B4-7:0 | B5-7:0 | B6-7:0  | B7-7:0  |
| R8-7:0 | R9-7:0 | R10-7:0 | R11-7:0 |
| G8-7:0 | G9-7:0 | G10-7:0 | G11-7:0 |
| B8-7:0 | B9-7:0 | B10-7:0 | B11-7:0 |

8 bit RGB Mapping to a 4-Lane Main-Link

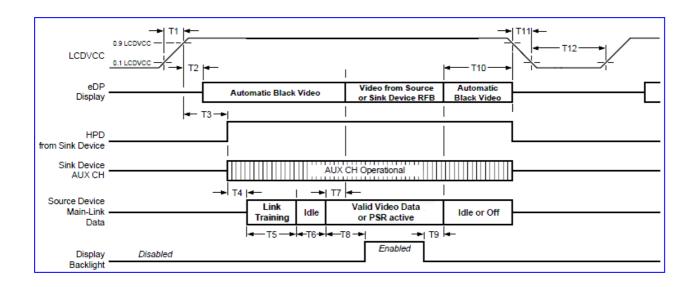


#### 4.5 DISPLAY TIMING SPECIFICATIONS


The input signal timing specifications are shown as the following table and timing diagram.

#### 4.5.1 Frame Rate: 60HZ

| Signal | Item                              | Symbol | Min. | Тур.  | Max. | Unit | Note |
|--------|-----------------------------------|--------|------|-------|------|------|------|
| DCLK   | Frequency                         | 1/Tc   | -    | 537.5 |      | MHz  | -    |
|        | Vertical Total Time               | TV     | -    | 2222  | -    | TH   | -    |
|        | Vertical Active Display Period    | TVD    | -    | 2160  | -    | TH   | -    |
| DE     | Vertical Active Blanking Period   | TVB    | -    | 62    | -    | TH   | -    |
|        | Horizontal Total Time             | TH     | -    | 4000  | -    | Tc   | -    |
|        | Horizontal Active Display Period  | THD    | -    | 3840  | -    | Tc   | -    |
|        | Horizontal Active Blanking Period | THB    | -    | 160   | -    | Tc   | -    |


Note (1) The panel can operate at 60Hz normal mode and power saving mode, respectively. All reliability tests are based on specific timing of 60Hz refresh rate. We can only assure the panel's electrical function at power saving mode.

#### INPUT SIGNAL TIMING DIAGRAM





#### 4.6 POWER ON/OFF SEQUENCE



#### Time Specifications

| Doromotor | Description                                               | Reqd. By         | Va  | alue | l lmi4 | Notes                                                                                                                                         |
|-----------|-----------------------------------------------------------|------------------|-----|------|--------|-----------------------------------------------------------------------------------------------------------------------------------------------|
| Parameter | Description                                               |                  | Min | Max  | Unit   | Notes                                                                                                                                         |
| T1        | Power rail rise time, 10% to 90%                          | Source<br>Device | 0.5 | 10   | ms     | -                                                                                                                                             |
| T2        | Delay from LCD,V <sub>CCS</sub> to black video generation | Sink<br>Device   | 0   | 200  | ms     | Automatic Black Video<br>generation prevents<br>display noise until valid<br>video data is received from<br>the Source device. <sup>2,3</sup> |
| Т3        | Delay from LCD,Vccs<br>to HPD high                        | Sink<br>Device   | 0   | 200  | ms     | Sink device AUX CH must<br>be operational upon HPD<br>high .4                                                                                 |
| T4        | Delay from HPD high<br>to link training<br>initialization | Source<br>Device | 0   | •    | ms     | Allows for Source device to read Link capability and initialize                                                                               |
| T5        | Link training duration                                    | Source<br>Device | 0   | -    | ms     | Dependant on Source device link training protocol                                                                                             |
| Т6        | Link idle                                                 | Source<br>Device | 0   | -    | ms     | Min Accounts for required<br>BS-Idle pattern. Max<br>allows for Source frame<br>synchronization                                               |



| T7  | Delay from valid video data from Source to video on display   | Sink<br>Device   | 0   | 50  | ms | Max value allows for the Sink device to validate video data and timing. At the end of T7, the Sink device will indicate that it detection valid video data, by setting the RECEIVE_PORT_0_STATUS bit of the STATUS bit of the STATUS register (DPCD Address 00205h, bit 0) to logic 1, and Sink device will no longer generate automatic Black Video           |
|-----|---------------------------------------------------------------|------------------|-----|-----|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Т8  | Delay from valid video data from Source to backlight on       | Source<br>Device | 80  | 1   | ms | The Source device must assure display video is stable                                                                                                                                                                                                                                                                                                          |
| T9  | Delay from backlight<br>disable to end of valid<br>video data | Source<br>Device | 50  |     | ms | The Source device must assure that the backlight is no longer illuminated. At the end of T9, the Sink device will indicate that it did not detect valid video data, by setting the RECEIVE _PORT_0_STATUS bit of the SINK_STATUS register (DPCD Address 00205h, bit 0;) to logic 0, and the Sink device will automatically display Black Video. <sup>2,3</sup> |
| T10 | Delay from end of valid video data from Source to power off   | Source<br>Device | 0   | 500 | ms |                                                                                                                                                                                                                                                                                                                                                                |
| T11 | V <sub>CCS</sub> power rail fall time, 90% to 10%             | Source<br>Device | 0.5 | 10  | ms | -                                                                                                                                                                                                                                                                                                                                                              |
| T12 | Vccs Power off time                                           | Source<br>Device | 500 | -   | ms |                                                                                                                                                                                                                                                                                                                                                                |

#### Remark:

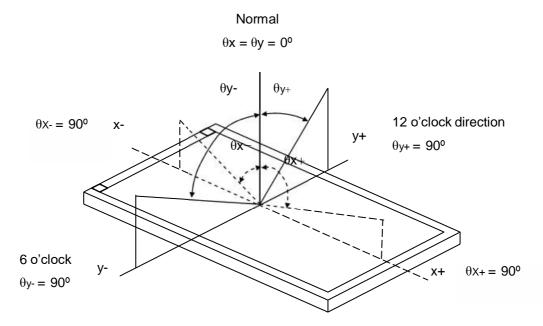
- 1. Please don't plug or unplug the interface cable when system is turned on.
- 2. The Sink device must include the ability to automatically and autonomously generate Black Video. The Sink device must automatically enable Black Video under the following conditions:
  - Upon LCDVCC power-on (within T2 max)
  - When the "No Video Stream Flag" (VB-ID Bit 3) is received from the Source device (at the end of T9)
- 3. The Sink device can implement the ability to disable the automatic Black Video function, as described in footnote "2", for system development and debugging purposes.
- 4. The Sink must support AUX Channel polling by the Source immediately following LCD VCC power-on without causing damage to the Sink device (the Source device can re-try if the Sink is not ready). The Sink device must be able to response to an AUX Channel transaction within the time specified within T3 max.



### 5. OPTICAL CHARACTERISTICS

#### **5.1 TEST CONDITIONS**

| Item                        | Symbol                                                          | Value  | Unit |  |  |
|-----------------------------|-----------------------------------------------------------------|--------|------|--|--|
| Ambient Temperature         | Та                                                              | 25±2   | οС   |  |  |
| Ambient Humidity            | Ha                                                              | 50±10  | %RH  |  |  |
| Supply Voltage              | Vcc                                                             | 5.8    | V    |  |  |
| Input Signal                | According to typical value in "4.3. ELECTRICAL CHARACTERISTICS" |        |      |  |  |
| LED Light Bar Input Current | <b>I</b> L                                                      | 4262.4 | mA   |  |  |


The measurement methods of optical characteristics are shown in Section 5.2. The following items should be measured under the test conditions described in Section 5.1 and stable environment shown in Note (5).

#### **5.2 OPTICAL SPECIFICATIONS**

|               |            | Symbol                         | Condition                               | Min.  | Тур.                             | Max.  | Unit              | Note              |
|---------------|------------|--------------------------------|-----------------------------------------|-------|----------------------------------|-------|-------------------|-------------------|
|               |            |                                | θ=0°                                    | -     | 12000<br>(with Local<br>dimming) | -     | -                 |                   |
|               |            |                                | θ=0°                                    | 800   | 1100                             |       |                   | (2),(4),          |
| Contrast R    | Ratio      | CR                             | φ 45°, θ=45°                            | 200   | 300                              |       |                   | (6),(11)          |
|               |            |                                | φ 135°, θ=45°                           | 200   | 300                              |       |                   | ,,,,,,            |
|               |            |                                | φ 225°, θ=45°                           | 200   | 300                              |       |                   |                   |
|               |            |                                | φ 315°, θ=45°                           | 200   | 300                              |       |                   |                   |
| Luminance of  | f White    | SDR                            |                                         | 1300  |                                  |       | cd/m <sup>2</sup> | (3),<br>(5),(6)   |
|               | Red        | Rx                             |                                         |       | TBD                              |       | -                 |                   |
|               | Neu        | Ry                             |                                         |       | TBD                              |       | -                 |                   |
|               | Green      | Gx                             |                                         |       | TBD                              |       | -                 |                   |
| Color         | Green      | Gy                             |                                         | Тур   | TBD                              | Тур   | -                 | (1),(6)           |
| Chromaticity  | Blue       | Bx                             |                                         | -0.03 | TBD                              | +0.03 | -                 |                   |
|               | Dide       | Ву                             |                                         |       | TBD                              |       | -                 |                   |
|               | White      | Wx                             |                                         |       | 0.313                            |       | -                 |                   |
|               | VVIIILE    | Wy                             |                                         |       | 0.329                            |       | -                 |                   |
| Color gamut   | Ratio      | NTSC                           |                                         | 95    | 100                              | -     |                   |                   |
|               |            | DCI-P3                         |                                         | 99    | 104                              |       | %                 | (7)               |
| Color gamut C | overage    | DCI-P3                         |                                         | 90    | 95                               | -     |                   |                   |
|               | Horizontal | $\theta_{x+}$                  |                                         | 80    | 85                               | -     |                   |                   |
| Viewing Angle |            | θ <sub>x-</sub>                | CR≥10                                   | 80    | 85                               | -     | Deg.              | (1),(4),          |
| Viewing Angle | Vertical   | $\theta_{Y+}$                  | ON=10                                   | 80    | 85                               | -     | Dog.              | (6)               |
|               | Vortioal   | θ <sub>Y</sub> -               |                                         | 80    | 85                               | -     |                   |                   |
| White Varia   | ation      | $\delta W_{5p}$                | $\theta_X=0^\circ$ , $\theta_Y=0^\circ$ | 80    | 85                               | -     | %                 | (4),(5),          |
|               |            | $\delta W_{13p}$               | $\theta_x=0^\circ, \ \theta_Y=0^\circ$  | 60    | 65                               | -     | %                 | (6)               |
| Gamma         |            | -                              | -                                       | 1.9   | 2.2                              | 2.5   |                   | (11)              |
| Response Time |            | T <sub>R</sub> +T <sub>F</sub> | center                                  | -     | -                                | 35    | ms                | (6),(8),<br>(11)  |
| Flicker       |            | at 60Hz                        | center                                  | -     | -                                | -25   | dB                | (6),(9),<br>(11)  |
| Cross-ta      | alk        | at 60Hz                        | w/o Halo effect                         | -     | -                                | 2     | %                 | (6),(10),<br>(11) |
| Image Stic    | king       | IS                             | 60°C 4Hr                                |       | TBD                              |       |                   |                   |



#### Note (1) Definition of Viewing Angle ( $\theta x$ , $\theta y$ ):



#### Note (2) Definition of Contrast Ratio (CR):

#### Under Full-screen long-duration sequence displays a full screen

The contrast ratio can be calculated by the following expression.

Contrast Ratio (CR) = L255 / L0

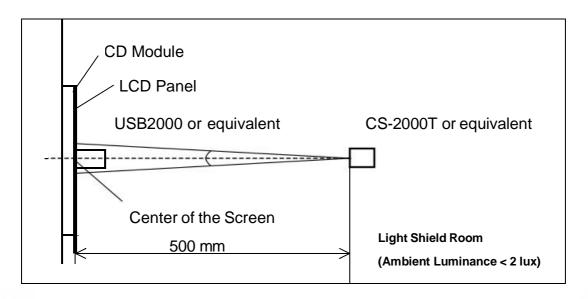
L255: Luminance of gray level255

L 0: Luminance of gray level 0 CR = CR (1)

CR (X) is corresponding to the Contrast Ratio of the point X at Figure in Note (5).

#### Note (3) Definition of Average Luminance of White (LAVE):

Measure the luminance of gray level 255 at 5 points


$$LAVE = [L(1) + L(2) + L(3) + L(4) + L(5)] / 5$$

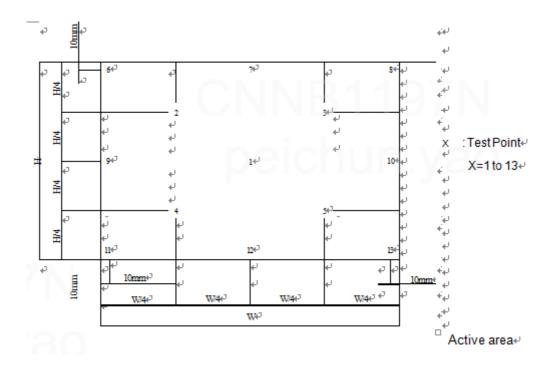
L (x) is corresponding to the luminance of the point X at Figure in Note (5)

#### Note (4) Measurement Setup:

The LCD module should be stabilized at given temperature for 20 minutes to avoid abrupt temperature change during measuring. In order to stabilize the luminance, the measurement should be executed after lighting Backlight for 20 minutes in a windless room.






The copyright belongs to InnoLux. Any unauthorized use is prohibited.

### Note (5) Definition of White Variation ( $\delta W$ ):

Measure the luminance of gray level 255 at the following points

 $\delta W_{5p} = \{Minimum [L (1)~L (5)] / Maximum [L (1)~L (5)]\}*100\%$ 

 $\delta W_{13p} = \{Minimum [L (1) \sim L (13)] / Maximum [L (1) \sim L (13)]\}^*100\%$ 





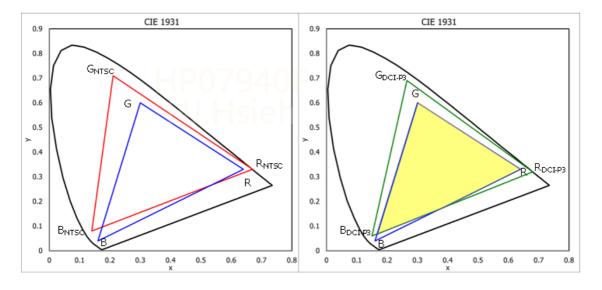
Note (6) The listed optical specifications refer to the initial value of manufacture, but the condition of the specifications after long-term operation will not be warranted.

#### Note (7) Definition of color gamut Ratio:

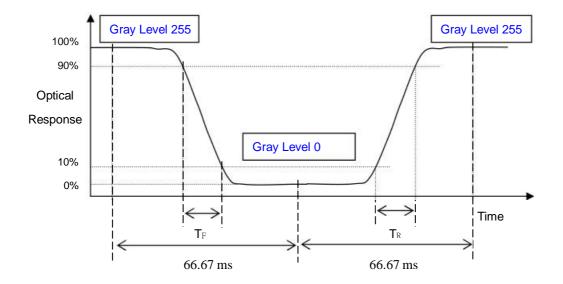
NTSC = Area\_C / Area\_A\*100%

DCI-PI= Area\_C / Area\_B\*100%

#### Definition of Color gamut Coverage:


DCI-PI= Area\_D / Area\_B\*100%

R<sub>NTSC</sub>, G<sub>NTSC</sub>, B<sub>NTSC</sub>: color coordinates of red, green, and blue defined by NTSC, respectively. R<sub>DCI-P3</sub>, G<sub>DCI-P3</sub>, B<sub>DCI-P3</sub>: color coordinates of red, green, and blue defined by DCI-P3, respectively. R, G, B: color coordinates of module on 255 gray levels of red, green, and blue, respectively.

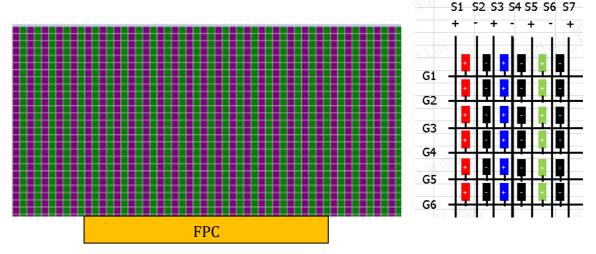

Area\_A: The area of triangle defined by  $R_{\rm NTSC}$ ,  $G_{\rm NTSC}$ ,  $B_{\rm NTSC}$  Area\_B: The area of triangle defined by  $R_{\rm DCL-P3}$ ,  $G_{\rm DCL-P3}$ ,  $B_{\rm DCL-P3}$ 

Area\_C: The area of triangle defined by R, G, B

Area\_D: The overlap area of triangle defined by R, G, B and triangle defined by RDCI-P3, GDCI-P3, B DCI-P3

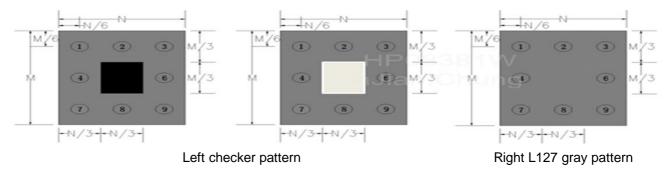


Note (8) Definition of Response Time (TR, TF): Under DC BLU and Panel temperature: 25℃ by INX instrument






#### Note (9) Definition of Flicker


Flicker is the pattern usually used to describe the visual sensation produced by a rapidly varying light intensity. There should follow flicker specification in normal direction of the display when the following figure is loaded Measurement equipment: CA-310 or similar equipments

Test method: Contrast mode.



Flicker checker pattern (Column inversion: L0/L127)

#### Note(10): Definition of crosstalk



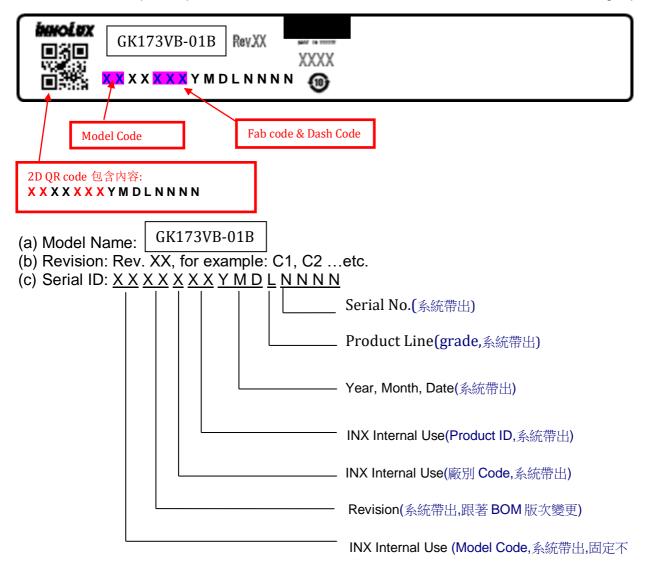
Crosstalk(Max Ratio) = \frac{(\text{Brightness at Right L127 gary pattern -Brightness at Left checker pattern)}}{\text{Brightness at Right L127 gary pattern}} \* 100\%

Note(11): BLU without Local dimming & Blinking, with corresponding proper gamma code.



#### 6. RELIABILITY TEST ITEM

| Test Item                                     | Test Condition                                                                                                          | Note      |
|-----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|-----------|
| High Temperature Storage Test                 | 80°C, 240 hours                                                                                                         |           |
| Low Temperature Storage Test                  | -30°C, 240 hours                                                                                                        |           |
| Thermal Shock Storage Test                    | -40°C(60min)~ 85°C(60min), 50cycles                                                                                     |           |
| High Temperature Operation Test               | 70°C, 240 hours                                                                                                         | (1)(2)(4) |
| Low Temperature Operation Test                | -20°C, 240 hours                                                                                                        |           |
| High Temperature & High Humidity Storage Test | 60°C, 90%RH, 240 hours                                                                                                  |           |
| ESD Test (Operation)                          | 150pF, 330Ω, 1sec/cycle<br>Condition 1 : Contact Discharge, ±4KV, class B<br>Condition 2 : Air Discharge, ±8KV, class C | (2)       |
| Shock Test (Non-Operating)                    | 100G for half sine 6ms, 3 times for each direction of ±X,±Y,±Z                                                          | (2)(3)    |
| Package Vibration Test                        | 1.14Grms Random frequency 1~200Hz 30min/Bottom, 15min/Right-Left, 15min/Front-Back                                      | (2)       |
| Packing Drop Test                             | <follow ista(1a)=""> 0kg≦W&lt;10kg : 76cm 10kg≦W&lt;19kg : 61cm</follow>                                                | (2)       |

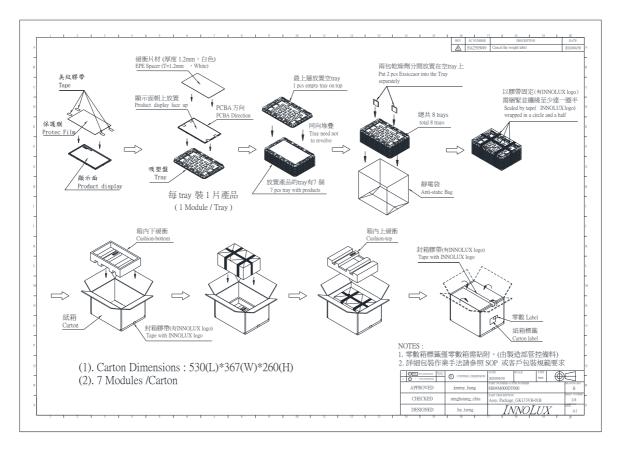

- Note (1) Evaluation should be tested after storage at room temperature for more than two hour.
- Note (2) After the reliability test, the product only guarantees operation function, but don't guarantee all of the cosmetic specification.
- Note (3) At testing Shock and Vibration, the fixture in holding the module has to be hard and rigid enough so that the module would not be twisted or bent by the fixture.
- Note (4) Under no condensation of dew.



#### 7. PACKING

#### 7.1 MODULE LABEL

The barcode nameplate is pasted on each module as illustration, and its definitions are as following explanation.




- (d) Production Location: MADE IN XXXX. XXXX stands for production location.
- (e) UL factory code stands for panel manufactured by Innolux satisfying UL requirement. Marking as follows rule:

| Region            | Factory ID |
|-------------------|------------|
| TW INX_D廠區        | GEMN       |
| TW INX_C廠區        |            |
| NB INX_NA廠區       | LEOO       |
| NB INX_NB,NC廠區    | VIRO       |
| NB INX_ND廠區       | COCKN      |
| FS INX_A,B棟       | CAPG       |
| NJ_INX <b>_廠區</b> | SAGJ       |



#### 7.2 CARTON



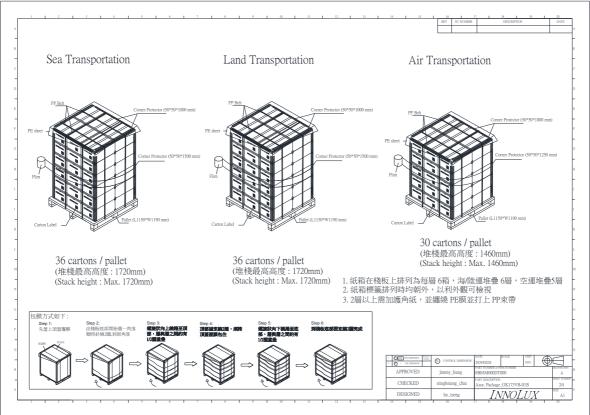



Figure. 7-2 Packing method



#### 8. PRECAUTIONS

#### 8.1 HANDLING PRECAUTIONS

- (1) The module should be assembled into the system firmly by using every mounting hole. Be careful not to twist or bend the module.
- (2) While assembling or installing modules, it can only be in the clean area. The dust and oil may cause electrical short or damage the polarizer.
- (3) Use fingerstalls or soft gloves in order to keep display clean during the incoming inspection and assembly process.
- (4) Do not press or scratch the surface harder than a HB pencil lead on the panel because the polarizer is very soft and easily scratched.
- (5) If the surface of the polarizer is dirty, please clean it by some absorbent cotton or soft cloth. Do not use Ketone type materials (ex. Acetone), Ethyl alcohol, Toluene, Ethyl acid or Methyl chloride. It might permanently damage the polarizer due to chemical reaction.
- (6) Wipe off water droplets or oil immediately. Staining and discoloration may occur if they left on panel for a long time.
- (7) If the liquid crystal material leaks from the panel, it should be kept away from the eyes or mouth. In case of contacting with hands, legs or clothes, it must be washed away thoroughly with soap.
- (8) Protect the module from static electricity, it may cause damage to the C-MOS Gate Array IC.
- (9) Do not disassemble the module.
- (10) Do not pull or fold the LED wire.
- (11) Pins of I/F connector should not be touched directly with bare hands.

#### **8.2 STORAGE PRECAUTIONS**

- (1) High temperature or humidity may reduce the performance of module. Please store LCD module within the specified storage conditions.
- (2) It is dangerous that moisture come into or contacted the LCD module, because the moisture may damage LCD module when it is operating.
- (3) It may reduce the display quality if the ambient temperature is lower than 10 °C. For example, the response time will become slowly, and the starting voltage of LED will be higher than the room temperature.

#### 8.3 OPERATION PRECAUTIONS

- (1) Do not pull the I/F connector in or out while the module is operating.
- (2) Always follow the correct power on/off sequence when LCD module is connecting and operating.
- (3) The startup voltage of Backlight is approximately 1000 Volts. It may cause electrical shock while assembling with converter. Do not disassemble the module or insert anything into the Backlight unit.





### Appendix. EDID DATA STRUCTUR

The EDID (Extended Display Identification Data) data formats are to support displays as defined in the VESA Plug & Display and FPDI standards.

| Byte#     | Byte# | Field Name and Comments                   | Value | Value    |
|-----------|-------|-------------------------------------------|-------|----------|
| (decimal) | (hex) | Tida Name and Comments                    | (hex) | (binary) |
| 0         | 00    | Header                                    | 00    | 00000000 |
| 1         | 01    | Header                                    | FF    | 11111111 |
| 2         | 02    | Header                                    | FF    | 11111111 |
| 3         | 03    | Header                                    | FF    | 11111111 |
| 4         | 04    | Header                                    | FF    | 11111111 |
| 5         | 05    | Header                                    | FF    | 11111111 |
| 6         | 06    | Header                                    | FF    | 11111111 |
| 7         | 07    | Header                                    | 00    | 00000000 |
| 8         | 08    | EISA ID manufacturer name ("CMN")         | 0D    | 00110000 |
| 9         | 09    | EISA ID manufacturer name                 | AE    | 10101110 |
| 10        | 0A    | ID product code (LSB)                     | 01    | 0000001  |
| 11        | 0B    | ID product code (MSB)                     | AD    | 10101101 |
| 12        | 0C    | ID S/N (fixed "0")                        | 00    | 00000000 |
| 13        | 0D    | ID S/N (fixed "0")                        | 00    | 00000000 |
| 14        | 0E    | ID S/N (fixed "0")                        | 00    | 00000000 |
| 15        | 0F    | ID S/N (fixed "0")                        | 00    | 00000000 |
| 16        | 10    | Week of manufacture (fixed week code)     | 2F    | 00101111 |
| 17        | 11    | Year of manufacture (fixed year code)     | 1E    | 00011110 |
| 18        | 12    | EDID structure version ("1")              | 01    | 0000001  |
| 19        | 13    | EDID revision ("4")                       | 04    | 00000100 |
| 20        | 14    | Video I/P definition ("Digital")          | B5    | 10110101 |
| 21        | 15    | Active area horizontal ("27.9 cm")        | 26    | 00100110 |
| 22        | 16    | Active area vertical ("17.4cm")           | 15    | 00010101 |
| 23        | 17    | Display Gamma (Gamma = "2.2")             | 78    | 01111000 |
| 24        | 18    | Feature support ("Active off, RGB Color") | 02    | 00000010 |
| 25        | 19    | Rx1, Rx0, Ry1, Ry0, Gx1, Gx0, Gy1, Gy0    | 4F    | 01001111 |
| 26        | 1A    | Bx1, Bx0, By1, By0, Wx1, Wx0, Wy1, Wy0    | B5    | 10110101 |
| 27        | 1B    | Rx=0.644                                  | AE    | 10101110 |
| 28        | 1C    | Ry=0.324                                  | 4F    | 01001111 |
| 29        | 1D    | Gx=0.306                                  | 3E    | 00111110 |
| 30        | 1E    | Gy=0.609                                  | B1    | 10110001 |
| 31        | 1F    | Bx=0.153                                  | 27    | 00100111 |
| 32        | 20    | By=0.063                                  | 0D    | 00001101 |
| 33        | 21    | Wx=0.315                                  | 50    | 01010000 |
| 34        | 22    | Wy=0.327                                  | 54    | 01010100 |
| 35        | 23    | Established timings 1                     | 00    | 00000000 |
| 36        | 24    | Established timings 2                     | 00    | 00000000 |
| 37        | 25    | Manufacturer's reserved timings           | 00    | 00000000 |
| 38        | 26    | Standard timing ID # 1                    | 01    | 00000001 |
| 39        | 27    | Standard timing ID # 1                    | 01    | 00000001 |
| 40        | 28    | Standard timing ID # 2                    | 01    | 00000001 |
| 41        | 29    | Standard timing ID # 2                    | 01    | 00000001 |



| 40       |          | 1                                                                       | 04       | 00000001 |
|----------|----------|-------------------------------------------------------------------------|----------|----------|
| 42       | 2A<br>2B | Standard timing ID # 3                                                  | 01       |          |
| 43       |          | Standard timing ID # 3                                                  | +        | 00000001 |
| 44       | 2C       | Standard timing ID # 4                                                  | 01       | 00000001 |
| 45       | 2D       | Standard timing ID # 4                                                  | 01       | 00000001 |
|          | 2E       | Standard timing ID # 5                                                  | 01       | 00000001 |
| 47       | 2F       | Standard timing ID # 5                                                  | 01       | 00000001 |
| 48       | 30       | Standard timing ID # 6                                                  | 01       | 00000001 |
| 49       | 31       | Standard timing ID # 6                                                  | 01       | 00000001 |
| 50       | 32       | Standard timing ID # 7                                                  | 01       | 00000001 |
| 51<br>52 | 33       | Standard timing ID # 7                                                  | 01       | 00000001 |
|          | 34       | Standard timing ID # 8                                                  | 01       | 00000001 |
| 53       | 35       | Standard timing ID # 8                                                  | 01<br>4D | 00000001 |
| 54<br>55 | 36       | Detailed timing description # 1 Pixel clock ("180.77MHz")               | 4D       | 01001101 |
| 55<br>56 | 37       | # 1 Pixel clock (hex LSB first)                                         | D0       | 11010001 |
| 56       | 38       | # 1 H active ("2160")                                                   | 00       | 00000000 |
| 57       | 39       | # 1 H blank ("44")                                                      | A0       | 10100000 |
| 58       | 3A       | # 1 H active : H blank                                                  | F0       | 11110000 |
| 59       | 3B       | # 1 V active ("1350")                                                   | 70       | 01110000 |
| 60       | 3C       | # 1 V blank ("17")                                                      | 3E       | 00111110 |
| 61       | 3D       | # 1 V active : V blank                                                  | 80       | 10000000 |
| 62       | 3E       | # 1 H sync offset ("16")                                                | 30       | 00110000 |
| 63       | 3F       | # 1 H sync pulse width ("16")                                           | 20       | 00100000 |
| 64       | 40       | # 1 V sync offset : V sync pulse width ("8 : 1")                        | 35       | 00110101 |
| 65       | 41       | # 1 H sync offset : H sync pulse width : V sync offset : V sync width   | 00       | 00000000 |
| 66       | 42       | # 1 H image size ("279 mm")                                             | 7D       | 01111101 |
| 67       | 43       | # 1 V image size ("174 mm")                                             | D6       | 11010110 |
| 68       | 44       | # 1 H image size : V image size                                         | 10       | 00010000 |
| 69       | 45       | # 1 H boarder ("0")                                                     | 00       | 00000000 |
| 70       | 46       | # 1 V boarder ("0")                                                     | 00       | 00000000 |
| 71       | 47       | # 1 Non-interlaced, Normal, no stereo, Separate sync, H/V pol Negatives | 18       | 00011000 |
| 72       | 48       | Detailed timing description # 2                                         | 00       | 00000000 |
| 73       | 49       | # 2 Flag                                                                | 00       | 00000000 |
| 74       | 4A       | # 2 Reserved                                                            | 00       | 00000000 |
| 75       | 4B       | # 2 ASCII string Model name                                             | 00       | 00000000 |
| 76       | 4C       | # 2 Flag                                                                | 00       | 00000000 |
| 77       | 4D       | # 2 Character of Model name ("")                                        | 00       | 00000000 |
| 78       | 4E       | # 2 Character of Model name ("")                                        | 00       | 00000000 |
| 79       | 4F       | # 2 Character of Model name ("")                                        | 00       | 00000000 |
| 80       | 50       | # 2 Character of Model name ("")                                        | 00       | 00000000 |
| 81       | 51       | # 2 Character of Model name ("")                                        | 00       | 00000000 |
| 82       | 52       | # 2 Character of Model name ("")                                        | 00       | 00000000 |
| 83       | 53       | # 2 Character of Model name ("")                                        | 00       | 00000000 |
| 84       | 54       | # 2 Character of Model name ("")                                        | 00       | 00000000 |
| 85       | 55       | # 2 Character of Model name ("")                                        | 00       | 00000000 |
| 86       | 56       | # 2 Character of Model name ("")                                        | 00       | 00000000 |
|          |          | · · ·                                                                   |          |          |
| 87       | 57       | # 2 Character of Model name ("")                                        | 00       | 00000000 |



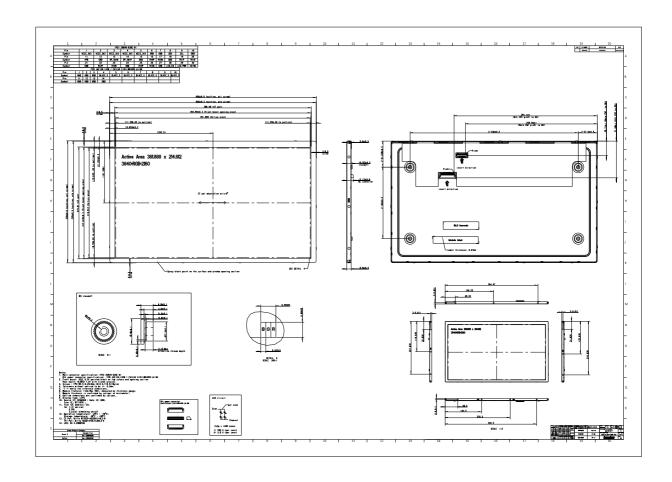
| 88  | 58 | # 2 New line character indicates end of ASCII string | 00       | 00000000 |
|-----|----|------------------------------------------------------|----------|----------|
| 89  | 59 | # 2 Padding with "Blank" character                   | 00       | 00000000 |
| 90  | 5A | Detailed timing description # 3                      | 00       | 00000000 |
| 91  | 5B | # 3 Flag                                             | 00       | 00000000 |
| 92  | 5C | # 3 Reserved                                         | 00       | 00000000 |
| 93  | 5D | # 3 ASCII string Vendor                              | 00       | 00000000 |
| 94  | 5E | # 3 Flag                                             | 00       | 00000000 |
| 95  | 5F | # 3 Character of string ("")                         | 00       | 00000000 |
| 96  | 60 | # 3 Character of string ("")                         | 00       | 00000000 |
| 97  | 61 | # 3 Character of string ("")                         | 00       | 00000000 |
| 98  | 62 | # 3 New line character indicates end of ASCII string | 00       | 00000000 |
| 99  | 63 | # 3 Padding with "Blank" character                   | 00       | 00000000 |
| 100 | 64 | # 3 Padding with "Blank" character                   | 00       | 00000000 |
| 101 | 65 | # 3 Padding with "Blank" character                   | 00       | 00000000 |
| 102 | 66 | # 3 Padding with "Blank" character                   | 00       | 00000000 |
| 103 | 67 | # 3 Padding with "Blank" character                   | 00       | 00000000 |
| 104 | 68 | # 3 Padding with "Blank" character                   | 00       | 00000000 |
| 105 | 69 | # 3 Padding with "Blank" character                   | 00       | 00000000 |
| 106 | 6A | # 3 Padding with "Blank" character                   | 00       | 00000000 |
| 107 | 6B | # 3 Padding with "Blank" character                   | 00       | 00000000 |
| 108 | 6C | Detailed timing description # 4                      | 00       | 00000000 |
| 109 | 6D | # 4 Flag                                             | 00       | 00000000 |
| 110 | 6E | # 4 Reserved                                         | 00       | 00000000 |
| 111 | 6F | # 4 ASCII string Model Name                          | FC       | 11111110 |
| 112 | 70 | # 4 Flag                                             | 00       | 00000000 |
| 113 | 71 | # 4 1st character of name ("P")                      | 48       | 01010000 |
| 114 | 72 | # 4 2nd character of name ("1")                      | 4B       | 00110001 |
| 115 | 73 | # 4 3rd character of name ("3")                      | 31       | 00110111 |
| 116 | 74 | # 4 4th character of name ("0")                      | 37       | 00110011 |
| 117 | 75 | # 4 5th character of name ("Z")                      | 33       | 01011010 |
| 118 | 76 | # 4 6th character of name ("F")                      | 56       | 01011010 |
| 119 | 77 | # 4 7th character of name ("Z")                      | 42       | 01011010 |
| 120 | 78 | # 4 8th character of name ("-")                      | 2D       | 00101101 |
| 121 | 79 | # 4 9th character of name ("B")                      | 30       | 01000010 |
| 122 | 7A | # 4 10th character of name ("H")                     | 31       | 01011010 |
| 123 | 7B | # 4 11th character of name ("2")                     | 42       | 00110001 |
| 124 | 7C | # 4 New line character indicates end of ASCII string | 0A       | 00001010 |
| 125 | 7D | # 4 Padding with "Blank" character                   | 0A       | 00100000 |
| 126 | 7E | Extension flag                                       | 02       | 00000001 |
| 127 | 7F | Checksum                                             | 86       | 00010001 |
| 0   | 00 | CEA header default "02h"                             | 02       | 00000000 |
| 1   | 01 | CEA header default "03h"                             | 03       | 11111111 |
| 2   | 02 | CEA header                                           | 05<br>0F | 11111111 |
| 3   | 03 | CEA header                                           | 00       | 11111111 |
| 4   | 04 | Colorimetry data block                               | E3       | 11111111 |
| 5   | 05 | <u>'</u>                                             | 05       | 11111111 |
| 6   | 06 |                                                      | 80       | 11111111 |
| 7   | 07 |                                                      | 00       | 00000000 |
| 8   | 08 | HDR static Metadata data block                       | E6       | 00110000 |
|     | 09 | HDR static Metadata data block                       | 06       | 10101110 |
| 9   | US | II IDIN Static ivictadata data biock                 | (70)     | 10101110 |



| 11 | 0B | HDR static Metadata data block | 01 | 10101101 |
|----|----|--------------------------------|----|----------|
| 12 | 0C | HDR static Metadata data block | 90 | 00000000 |
| 13 | 0D | HDR static Metadata data block | 90 | 00000000 |
| 14 | 0E | HDR static Metadata data block | 35 | 00000000 |
| 15 | 0F |                                | 00 | 00000000 |
| 16 | 10 |                                | 00 | 00000000 |
| 17 | 11 |                                | 00 | 00000000 |
| 18 | 12 |                                | 00 | 00000000 |
| 19 | 13 |                                | 00 | 00000000 |
| 20 | 14 |                                | 00 | 00000000 |
| 21 | 15 |                                | 00 | 00000000 |
| 22 | 16 |                                | 00 | 00000000 |
| 23 | 17 |                                | 00 | 00000000 |
| 24 | 18 |                                | 00 | 00000000 |
| 25 | 19 |                                | 00 | 00000000 |
| 26 | 1A |                                | 00 | 00000000 |
| 27 | 1B |                                | 00 | 00000000 |
| 28 | 1C |                                | 00 | 00000000 |
| 29 | 1D |                                | 00 | 00000000 |
| 30 | 1E |                                | 00 | 00000000 |
| 31 | 1F |                                | 00 | 00000000 |
| 32 | 20 |                                | 00 | 00000000 |
| 33 | 21 |                                | 00 | 00000000 |
| 34 | 22 |                                | 00 | 00000000 |
| 35 | 23 |                                | 00 | 00000000 |
| 36 | 24 |                                | 00 | 00000000 |
| 37 | 25 |                                | 00 | 00000000 |
| 38 | 26 |                                | 00 | 00000000 |
| 39 | 27 |                                | 00 | 00000000 |
| 40 | 28 |                                | 00 | 00000000 |
| 41 | 29 |                                | 00 | 00000000 |
|    |    |                                |    |          |



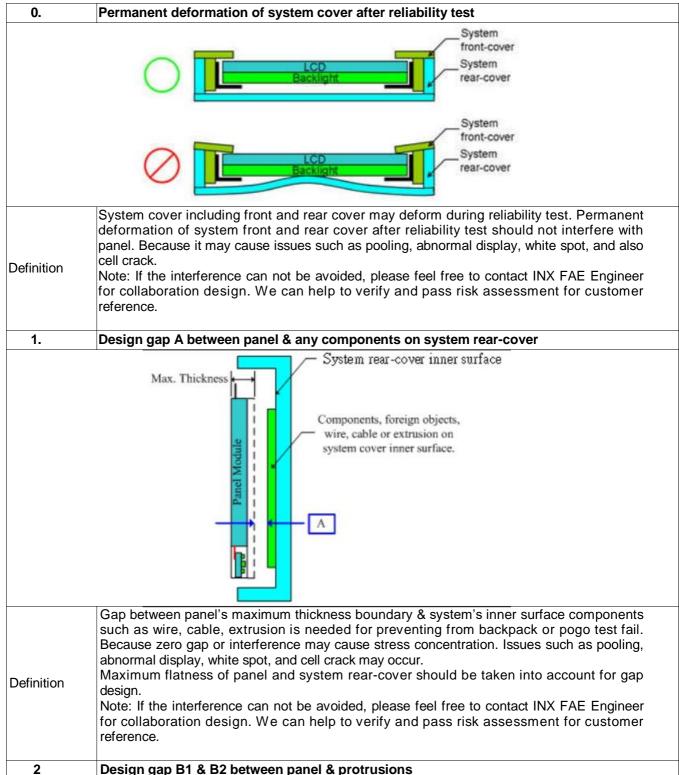
| 42 | 2A | 00 | 00000000 |
|----|----|----|----------|
| 43 | 2B | 00 | 00000000 |
| 44 | 2C | 00 | 00000000 |
| 45 | 2D | 00 | 00000000 |
| 46 | 2E | 00 | 00000000 |
| 47 | 2F | 00 | 00000000 |
| 48 | 30 | 00 | 00000000 |
| 49 | 31 | 00 | 00000000 |
| 50 | 32 | 00 | 00000000 |
| 51 | 33 | 00 | 00000000 |
| 52 | 34 | 00 | 00000000 |
| 53 | 35 | 00 | 00000000 |
| 54 | 36 | 00 | 00000000 |
| 55 | 37 | 00 | 00000000 |
| 56 | 38 | 00 | 00000000 |
| 57 | 39 | 00 | 00000000 |
| 58 | 3A | 00 | 00000000 |
| 59 | 3B | 00 | 00000000 |
| 60 | 3C | 00 | 00000000 |



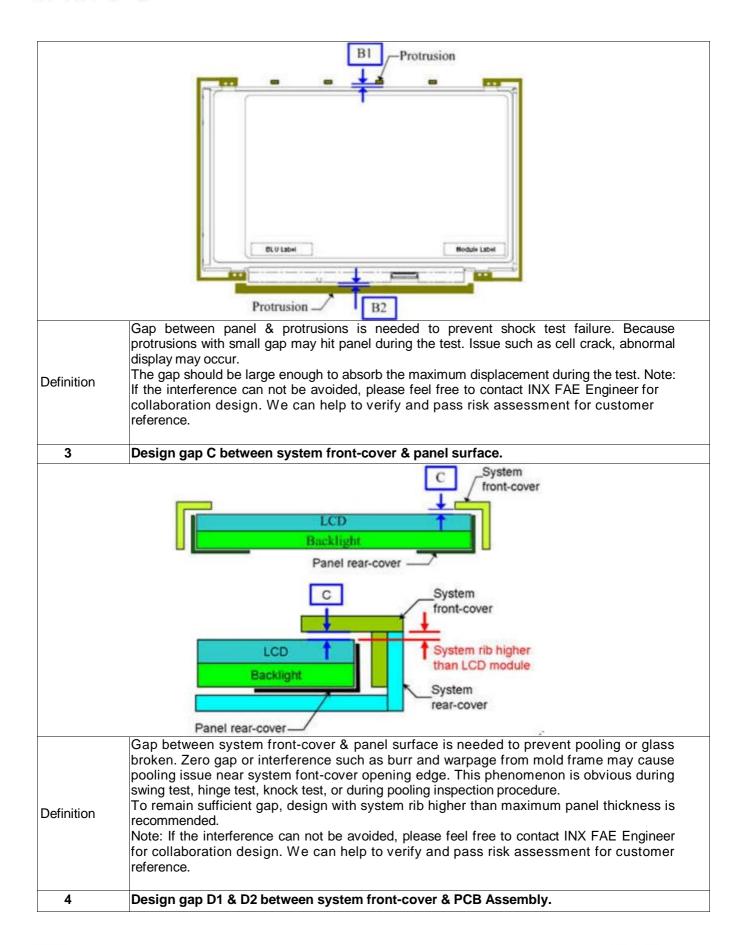

| 04  | 65 | <br>0.0 | 0000000  |
|-----|----|---------|----------|
| 61  | 3D | 00      | 00000000 |
| 62  | 3E | 00      | 00000000 |
| 63  | 3F | 00      | 00000000 |
| 64  | 40 | 00      | 00000000 |
| 65  | 41 | 00      | 00000000 |
| 66  | 42 | 00      | 00000000 |
| 67  | 43 | 00      | 00000000 |
| 68  | 44 | 00      | 00000000 |
| 69  | 45 | 00      | 00000000 |
| 70  | 46 | 00      | 00000000 |
| 71  | 47 | 00      | 00000000 |
| 72  | 48 | 00      | 00000000 |
| 73  | 49 | 00      | 00000000 |
| 74  | 4A | 00      | 00000000 |
| 75  | 4B | 00      | 00000000 |
| 76  | 4C | 00      | 00000000 |
| 77  | 4D | 00      | 00000000 |
| 78  | 4E | 00      | 00000000 |
| 79  | 4F | 00      | 00000000 |
| 80  | 50 | 00      | 00000000 |
| 81  | 51 | 00      | 00000000 |
| 82  | 52 | 00      | 00000000 |
| 83  | 53 | 00      | 00000000 |
| 84  | 54 | 00      | 00000000 |
| 85  | 55 | 00      | 00000000 |
| 86  | 56 | 00      | 00000000 |
| 87  | 57 | 00      | 00000000 |
|     | 0, |         |          |
| 88  | F0 | 00      | 00000000 |
| 89  | 58 | 00      |          |
|     | 59 |         | 00000000 |
| 90  | 5A | 00      | 00000000 |
| 92  | 5B | 00      | 00000000 |
| 93  | 5C | 00      | 00000000 |
| 93  | 5D | 00      | 00000000 |
|     | 5E | 00      | 00000000 |
| 95  | 5F | 00      | 00000000 |
| 96  | 60 | 00      | 00000000 |
| 97  | 61 | 00      | 00000000 |
| 98  | 62 | 00      | 00000000 |
| 99  | 63 | 00      | 00000000 |
| 100 | 64 | 00      | 00000000 |
| 101 | 65 | 00      | 00000000 |
| 102 | 66 | 00      | 00000000 |
| 103 | 67 | 00      | 00000000 |
| 104 | 68 | 00      | 00000000 |
| 105 | 69 | 00      | 00000000 |
| 106 | 6A | 00      | 00000000 |
| 107 | 6B | 00      | 00000000 |
| 108 | 6C | 00      | 00000000 |
| 109 | 6D | 00      | 00000000 |
| 110 | 6E | 00      | 00000000 |



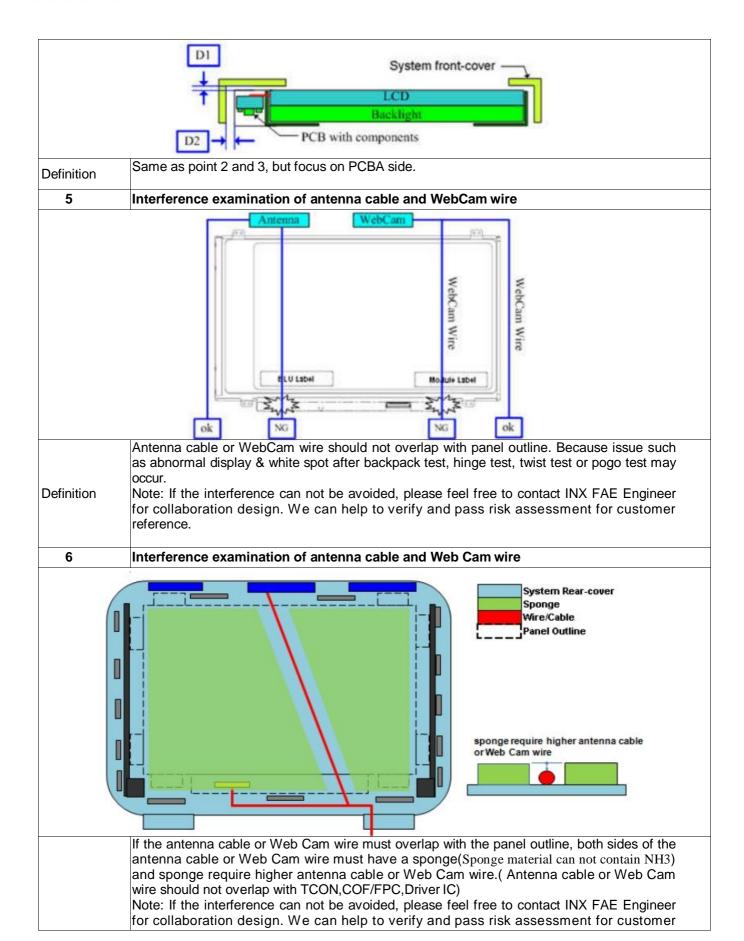
| 111 | 6F |          | 00 | 00000000 |
|-----|----|----------|----|----------|
| 112 | 70 |          | 00 | 00000000 |
| 113 | 71 |          | 00 | 00000000 |
| 114 | 72 |          | 00 | 00000000 |
| 115 | 73 |          | 00 | 00000000 |
| 116 | 74 |          | 00 | 00000000 |
| 117 | 75 |          | 00 | 00000000 |
| 118 | 76 |          | 00 | 00000000 |
| 119 | 77 |          | 00 | 00000000 |
| 120 | 78 |          | 00 | 00000000 |
| 121 | 79 |          | 00 | 00000000 |
| 122 | 7A |          | 00 | 00000000 |
| 123 | 7B |          | 00 | 00000000 |
| 124 | 7C |          | 00 | 00000000 |
| 125 | 7D |          | 00 | 00000000 |
| 126 | 7E |          | 00 | 00000000 |
| 127 | 7F | Checksum | 3D | 00010001 |


### **Appendix. OUTLINE DRAWIN**

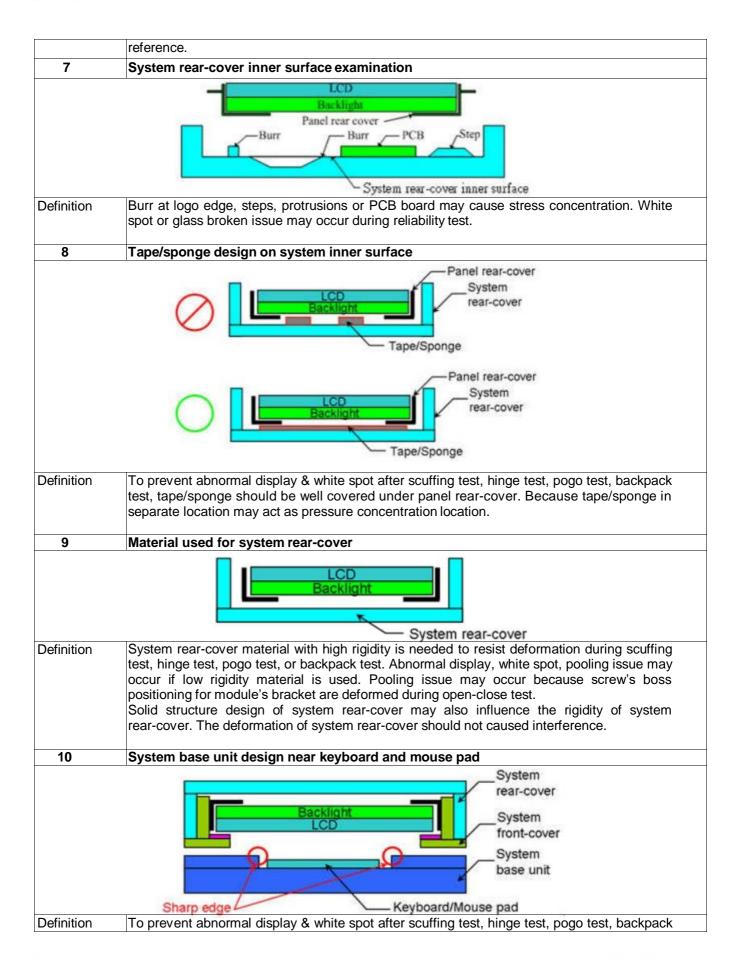




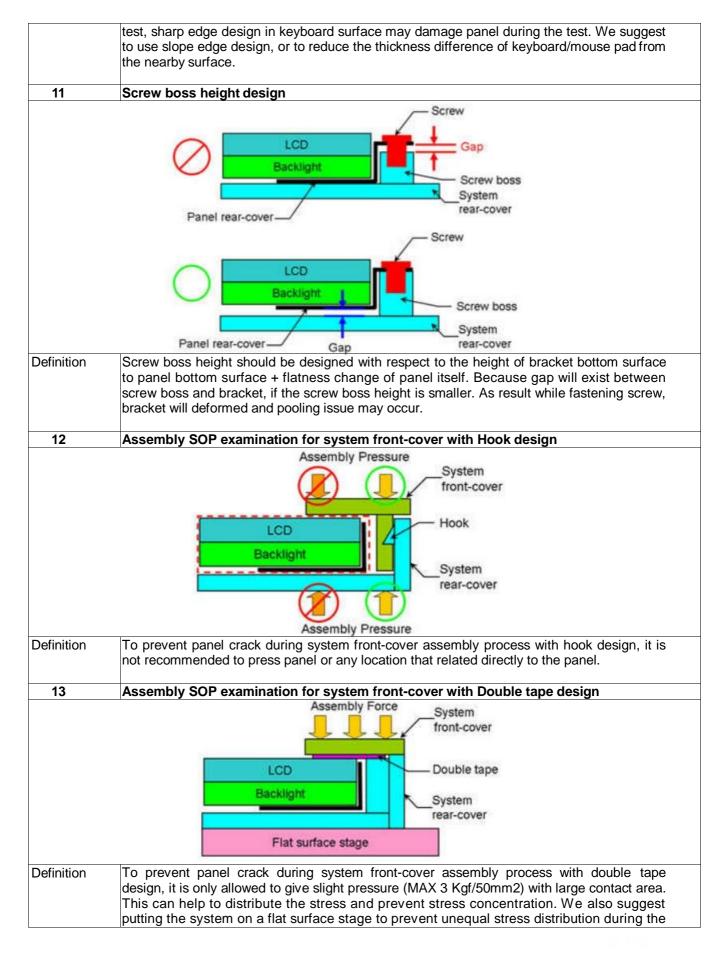

#### Appendix. SYSTEM COVER DESIGN GUIDANCE


Ver.7

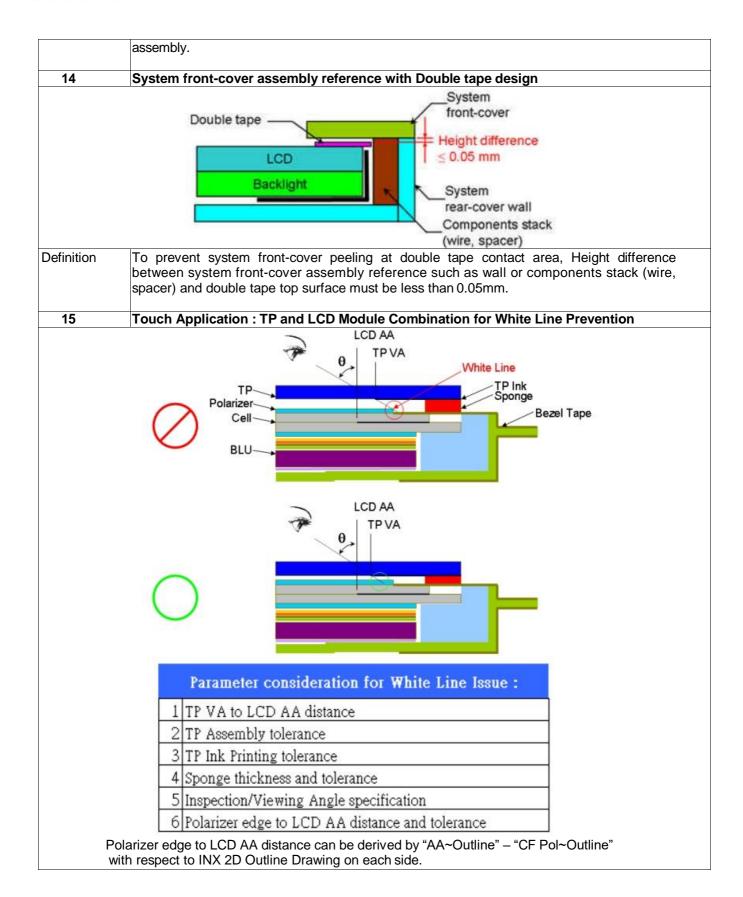




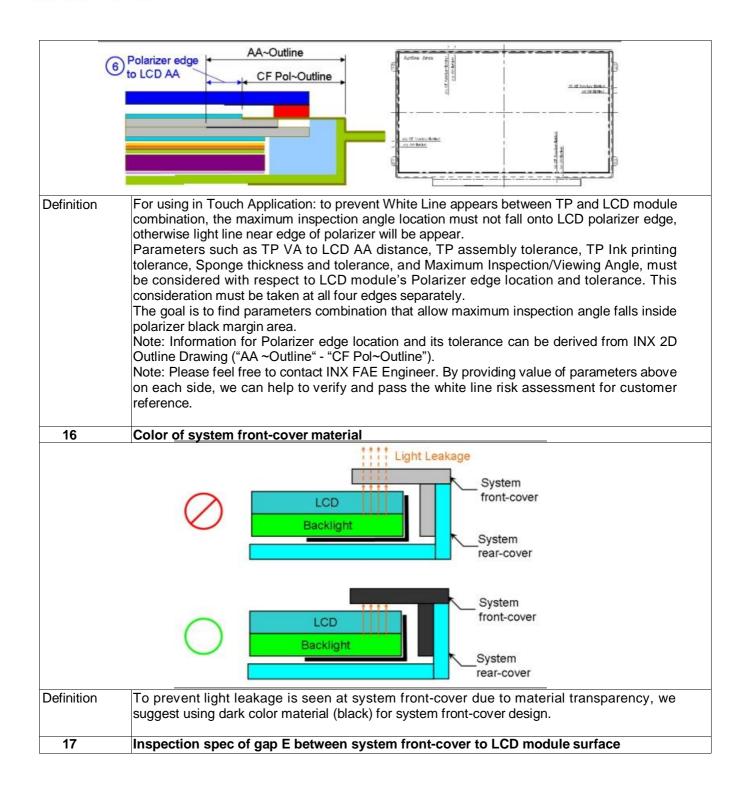


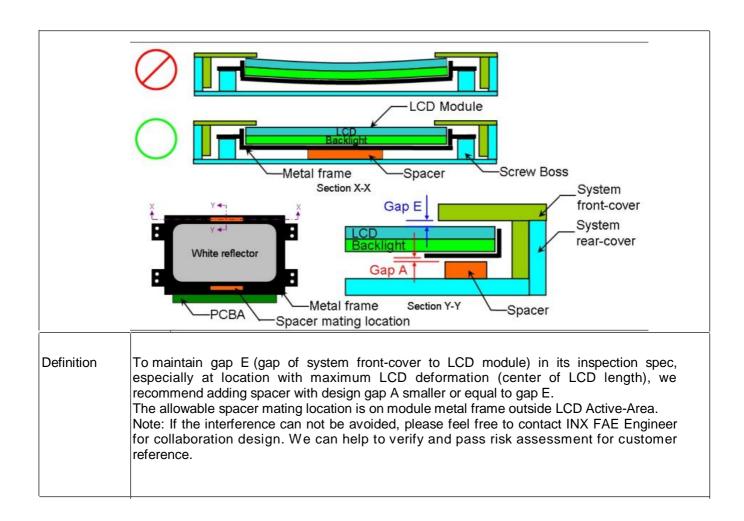



















### Appendix. LCD MODULE HANDLING MANUAL

| Purpose | incorrect ha<br>• This manual possible in this manual | prepared to prevent panel dysfondling procedure.  provides guide in unpacking and hall the high may contact / related with panel to prevent panel loss. | ndling steps.      |
|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
| 1.      | Unpacking                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Open carton                                                                                                                                             | Remove EPE Cushion |
| 32      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                         |                    |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                         |                    |
| No.     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                         |                    |
| Ope     | n plastic bag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Cut Adhesive Tape                                                                                                                                       | Remove EPE Cushion |
| 2.      | Panel Lifting                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                         |                    |







Remove PE Foam



Handle with care (see next page)





Finger Slot

Use slots at both sides for finger insertion. Handle panel upward with care.

3. Do and Don't

#### Do:

- Handle with both hands.
- Handle panel at left and right edge.



### Don't :

Lifting with one hand.



Handle at PCBA side.





### Don't:

- Stack panels.



Press panel.



### Don't:

Put foreign stuff onto panel



- Put foreign stuff under panel



### Don't:

 Paste any material unto white reflector sheet



### Don't:

 Pull / Push white reflector sheet





### Don't:

Hold at panel corner.



### Don't:

Twist panel.



### Do:

 Hold panel at top edge while inserting connector.



### Don't:

 Press white reflector sheet while inserting connector.





### Do :

 Remove panel protector film starts from pull tape



### Don't:

 Remove panel protector film From film another side.



### Don't:

Touch or Press PCBA Area.



