

Document Title	HSD070GWW5-900001-PX Preliminary Specification	Page No.	1/25
Document No.		Revision	1.0

TO: Data Modul

Date : Dec.8, 2021

HannStar Product Specification

(Preliminary)

7" Color TFT-LCD Module Model: HSD070GWW5-900001-PX

Note: (1) The information contained herein is tentative and may be changed without prior notices.

- (2) Please contact HannStar Display Corp. before designing your product based on this module specification.
- (3) The information contained herein is presented merely to indicate the characteristics and performance of our products. No responsibility is assumed by HannStar for any intellectual property claims or other problems that may result from application based on the module described herein.

Document Title	HSD070GWW5-900001-PX Preliminary Specification	Page No.	2/25
Document No.		Revision	1.0

Document Title	HSD070GWW5-900001-PX Preliminary Specification	Page No.	3/25
Document No.		Revision	1.0

Contents 1.0 GENERAL DESCRIPTION ABSOLUTE MAXIMUM RATINGS......5 2.0 3.0 4.0 5.0 ELECTRICAL CHARACTERISTICS 12 6.0 7.0 8.0 9.0 PACKAGE SPECIFICATION 23 10.0 GENERAL PRECAUTION......24 11.0

Document Title	HSD070GWW5-900001-PX Preliminary Specification	Page No.	4/25
Document No.		Revision	1.0

1.0 GENERAL DESCRIPTION

Introduction

HannStar Display model HSD070PWW5-900001-PX is a color active matrix thin film transistor (TFT) liquid crystal display (LCD) that uses amorphous silicon TFT as a switching device. This model is composed of a TFT LCD panel, a driving circuit and a back- light system. This TFT LCD has a 7.0 inch (10:16) diagonally measured active display area with WXGA (800 horizontal by 1280 vertical pixel) resolution.

1.1 Features

- 7 inch configuration
- 16.7M color by MIPI 4lane interface
- ROHS / Halogen Free Compliance

1.2 General information

Item		Specification	Unit
LCM outline din	nension(LCM)	161.6(W) x 99.75(H) x 2.45(D)	mm
Display area		94.2(W) x 150.72(H)	mm
Number of Pixel		800RGB x 1280	pixels
Pixel pitch		0.11775(W) x 0.11775(H)	mm
Pixel arrangement		RGB Vertical Stripe	
Display mode		Normally Black	
Interface		MIPI	
NTSC		60 (Typ.)	%
Surface treatme	ent	AG	
Weight		79.5(Typ.)	g
Power	Logic System	0.135(Typ.)	W
Consumption	B/L System	1.28(Typ.)	W

Document Title	HSD070GWW5-900001-PX Preliminary Specification	Page No.	5/25
Document No.		Revision	1.0

2.0 ABSOLUTE MAXIMUM RATINGS

2.1 Electrical Absolute Rating

ltem	Symbol	Min.	Max.	Unit	Note
Analog Supply voltage	VCC	2.5	6.6	V	GND=0
Digital supply voltage	IOVCC	1.65	3.6	V	GND=0
Logic Input voltage	Vin	-0.3	IOVCC+0.3	V	GND=0

Note (1):

Permanent damage may occur to the LCD module if beyond this specification.

Functional operation should be restricted to the conditions described under normal operating conditions.

Note (2):

Ta =25±2°C

2.1 Environment Absolute Rating

ltem	Symbol	Min.	Max.	Unit	Note
Operating Temperature	Topa	-20	70	$^{\circ}\mathbb{C}$	
Storage Temperature	T _{stg}	-30	80	$^{\circ}$ C	

Note 1:

If Ta below 50°C, the maximal humidity is 90%RH, if Ta over 50°C, absolute humidity should be less than 60%RH.

Note 2:

The response time will be extremely slow when the operating temperature is around -10 $^{\circ}$ C, and the back ground will become darker at high temperature operating.

Document Title	HSD070GWW5-900001-PX Preliminary Specification	Page No.	6/25
Document No.		Revision	1.0

3.0 OPTICAL CHARACTERISTICS

3.1 Optical specification

ltem		Symbol	Condition	Min.	Тур.	Max.	Unit	Note
Contrast		CR		600	800	_		(1)(2)
Doonongo tim		Tr		_	10	15	msec	(1)(3)
Response tim	ie	Tf			20	25	msec	(1)(3)
White lumina	nce	YL		300	350	_	cd/m ²	(1)(4)
Color Gamut		S(%)		_	60	1	%	
	\	Wx	⊖=0		0.302			
	White	Wy	Normal		0.316			
	Red	Rx	viewing angle		-			
Color		Ry	arigic		-			
chromaticity (CIE1931)	Green	Gx			-			
(0.2.100.1)		Gy			-			(4) (4)
	Blue	Bx			-			(1)(4)
		Ву			-			
		θL		_	85	_		
Viewing	Hor.	ΘR	OD 40	_	85			
angle		θυ	CR>10	_	85	_		
	Ver.	θр		_	85	_		
Brightness Uniformity		Вимі	Θ=0	80			%	
Optima View D	Direction			AL	L.			(6)

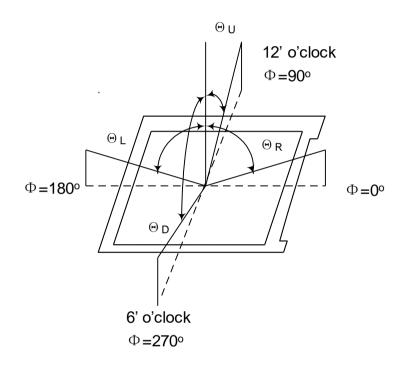
3.2 Measuring Condition

■ Measuring surrounding: dark room

■ LED current l_L: 80mA

■ Ambient temperature: 25±2°C

■ 15min. warm-up time.

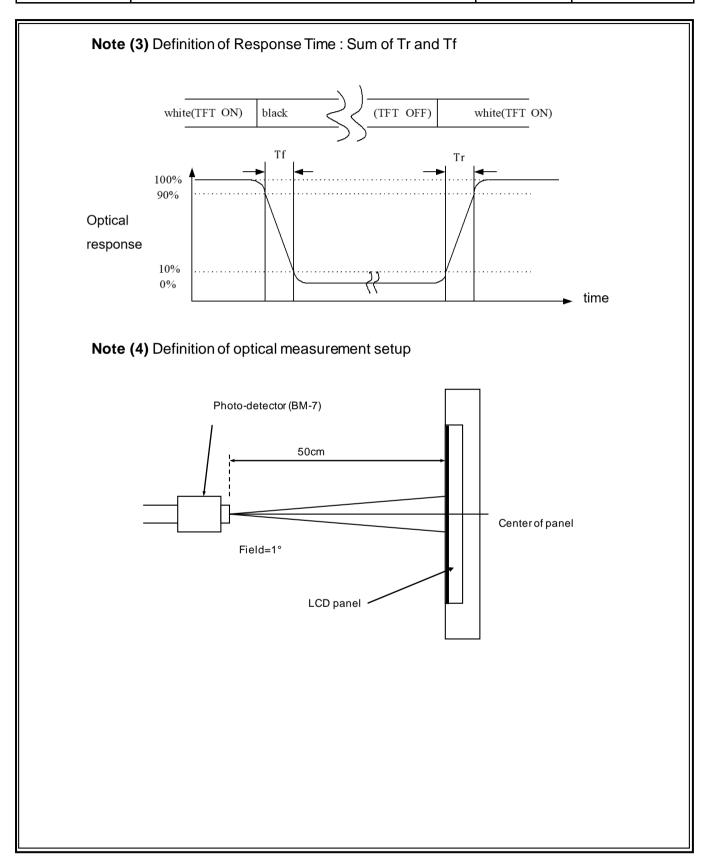


Document Title	HSD070GWW5-900001-PX Preliminary Specification	Page No.	7/25
Document No.		Revision	1.0

3.3 Measuring Equipment

- FPM520 of Westar Display technologies, INC., which utilized SR-3 for Chromaticity and BM-7A for other optical characteristics.
- Measuring spot size: 20 ~ 21 mm

Note (1) Definition of Viewing Angle:

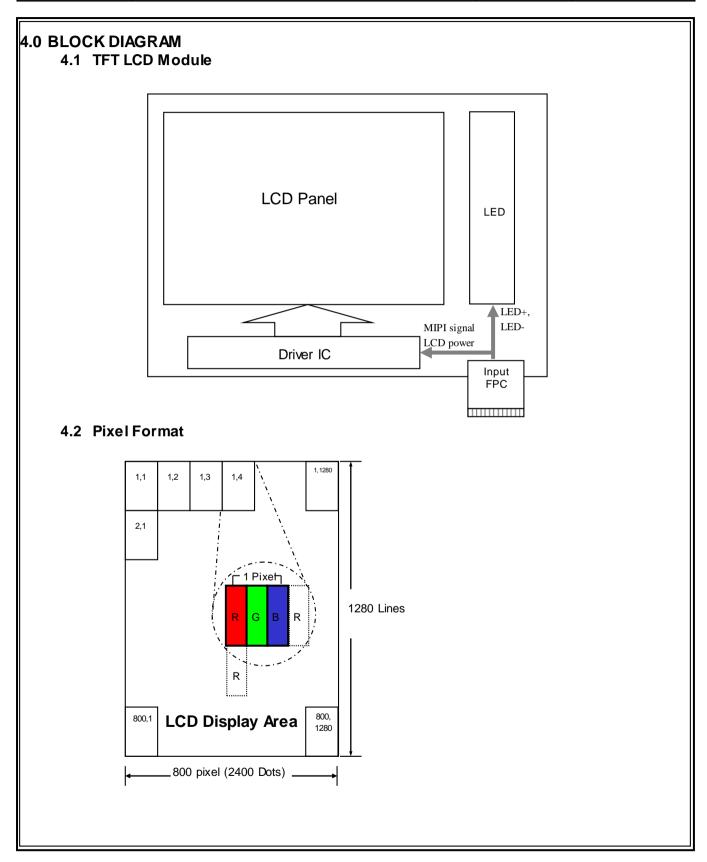


Note (2) Definition of Contrast Ratio (CR): measured at the center point of panel

CR = Luminance with all pixels white

Luminance with all pixels black

Document Title	HSD070GWW5-900001-PX Preliminary Specification	Page No.	8/25
Document No.		Revision	1.0



Document Title	HSD070GWW5-900001-PX Preliminary Specification	Page No.	9/25
Document No.		Revision	1.0

Note (5) Definition of brightness uniformity

Document Title	HSD070GWW5-900001-PX Preliminary Specification	Page No.	10/25
Document No.		Revision	1.0

Document Title	HSD070GWW5-900001-PX Preliminary Specification	Page No.	11/25
Document No.		Revision	1.0

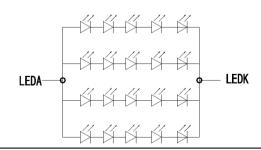
5.0 INTERFACE PIN CONNECTION 5.1FPC Pin Assignment

The used Connector: AEX630124 manufactured by AEX

No.	Symbol	Functions
1	MIPI_D0N	Negative polarity of low voltage differential data0 signal
2	MIPI_D0P	Positive polarity of low voltage differential data0 signal
3	GND	Power Ground
4	MIPI_D1N	Negative polarity of low voltage differential data1 signal
5	MIPI_D1P	Positive polarity of low voltage differential data1 signal
6	GND	Power Ground
7	MIPI_CLKN	Negative polarity of low voltage differential clock signal
8	MIPI_CLKP	Positive polarity of low voltage differential clock signal
9	GND	Power Ground
10	MIPI_D2N	Negative polarity of low voltage differential data2 signal
11	MIPI_D2P	Positive polarity of low voltage differential data2 signal
12	GND	Power Ground
13	MIPI_D3N	Negative polarity of low voltage differential data3 signal
14	MIPI_D3P	Positive polarity of low voltage differential data3 signal
15	GND	Power Ground
16	VDDIN	VDDIN PIN
17	VDDIN	VDDIN PIN
18	GND	Power Ground
19	RESET	Reset Pin(For display driver)
20	GND	Power Ground
21	LED_PWM	LED_PWM PIN
22	GND	Power Ground
23	AVEE	AVEE PIN
24	AVDD	AVDD PIN
25	GND	Power Ground
26	LED-	Power supply for backlight cathode input terminal.
	otes _{LED-}	Power supply for backlight cathode input terminal.
28	LED+	Power supply for backlight anode input terminal.
29	LED+	Power supply for backlight anode input terminal.
30	NC	Not connect

- 1. NC pin must be retained; this pin can't contact GND or other signal
- 2. GND pin must ground contact, cannot be floating

Document Title	HSD070GWW5-900001-PX Preliminary Specification	Page No.	12/25
Document No.		Revision	1.0

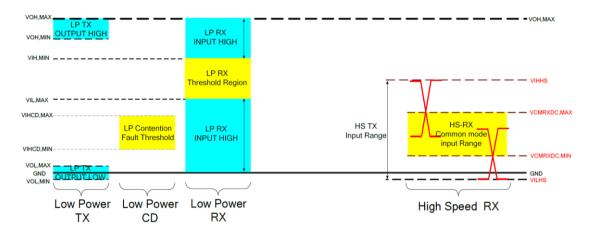

6.0 ELECTRICAL CHARACTERISTICS 6.1 TFT LCD Module

ltem	Symbol	Min.	Тур.	Max.	Unit	Note
Supply voltage	VDDIN	1.65	-	3.6	V	
Positive Voltage input	AVDD	5.3	5.5	5.8	V	
Negative Voltage input	AVEE	-5.8	-5.5	-5.3	V	
Supply current	Ivddin	-	25	31.25	mA	VDDIN=1.8V, @white pattern
Positive Voltage input current	l avdd	-	8	10	mA	AVDD=5.5V, @white pattern
Negative Voltage input current	I AVEE	-	8	10	mA	AVEE=-5.5V, @white pattern
Logic input voltage	VIH	0.7*VDDIN	-	VDDIN	V	
Logic input voltage	VIL	GND	-	0.3*VDDIN	V	

6.2 Backlight Unit

Parameter	Symbol	Min	Тур	Max	Units	Condition	
LED Current	lL		80		mA	Ta=25℃	
LED Voltage	VF	14	16	18	Volt	Ta=25℃	
LED Life-Time	N/A	20000			Hour	Ta=25℃	
LLD LIIO TIIIIO	1 4// (20000				riodi	Note (2)

- Note (1) LED life time (Hr) can be defined as the time in which it continues to operate under the condition: Ta=25±3°C, typical IL value indicated in the above table until the brightness becomes less than 50%.
- Note (2) The "LED life time" is defined as the module brightness decrease to 50% original brightness at Ta=25 $^{\circ}$ C. and IL=80mA. The LED lifetime could be decreased if operating IL is larger than 80mA. The constant current driving method is suggested.
- Note (3) LED Light Bar Circuit



Document Title	HSD070GWW5-900001-PX Preliminary Specification	Page No.	13/25
Document No.		Revision	1.0

6.3 MIPI characteristics

6.3.1 The electrical specifications of HS and LP 6.3.1.1 HS and LP signal levels

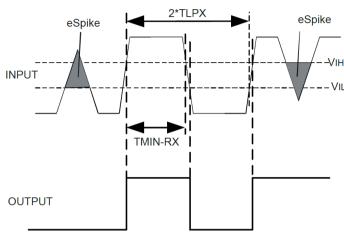
6.3.1.2 The Electronic Characteristics of Low-Power Transmitter (TX) LP-TX DC specifications

Parameter	Description	Min.	Тур.	Max.	Unit	Note
V_{OH}	Thevenin output high level	1.1	1.2	1.3	V	-
V _{OL}	Thevenin output low level	-50	-	50	mV	
Zole	Output impedance of LP-TX	110	-	-	Ω	(1)

Note: (1)Though no maximum value for Z_{OLP} is specified, the LP transmitter output impedance shall ensure the t_{RLP}/t_{FLP} specification is met.

LP-TX AC Specifications

Parameter	Description	Min.	Тур.	Max.	Unit	Note
$t_{RLP}/_{tFLP}$	15%-85% rise time and fall time	-	-	25	ns	(1)
T _{LP-PER-TX}	Period of the LP exclusive-OR clock	90			ns	
	Slew rate @ CLOAD = 0pF	30	-	500	mV/ns	(1),(3),(5),(6)
	Slew rate @ CLOAD = 5pF	-	-	300	mV/ns	(1),(3),(5),(6)
	Slew rate @ CLOAD = 20pF	-	-	250	mV/ns	(1),(3),(5),(6)
	Slew rate @ CLOAD = 70pF	-	-	150	mV/ns	(1),(3),(5),(6)
$\delta V/\delta t_{SR}$	Slew rate @ CLOAD = 0 to 70pF (Rising Edge Only)	30	-	-	mV/ns	(1),(3),(7)
	Slew rate @ CLOAD = 0 to 70pF (Rising Edge Only)	30 - 0.075 * (VO,INST- 700)	-	-	mV/ns	(1),(8),(9)
	Slew rate @ CLOAD = 0 to 70pF (Falling Edge Only)	30	-	-	mV/ns	(1),(2),(3)
C_{LOAD}	Load capacitance	-	-	70	pF	-


Note: (1) CLOAD includes the low-frequency equivalent transmission line capacitance. The capacitance of TX and RX are assumed to always be <10pF. The distributed line capacitance can be up to 50pF for a transmission line with 2ns delay.

- (2) When the output voltage is between 400 mV and 930 mV.
- (3) Measured as average across any 50 mV segment of the output signal transition.
- (4) This parameter value can be lower than TLPX due to differences in rise vs. fall signal slopes and trip levels and mismatches between Dp and Dn LP transmitters.
- (5) This value represents a corner point in a piecewise linear curve.
- (6) When the output voltage is in the range specified by VPIN(absmax).
- (7) When the output voltage is between 400 mV and 700 mV.
- (8) Where VO,INST is the instantaneous output voltage, VDP or VDN, in millivolts.
- (9) When the output voltage is between 700 mV and 930 mV.

Document Title	HSD070GWW5-900001-PX Preliminary Specification	Page No.	14/25
Document No.		Revision	1.0

6.3.1.3 The Electronic Characteristics of Receiver (RX) Input Glitch Rejections of Low-Power Receivers

LP-RX DC Specifications

Parameter	Description		Тур.	Max.	Unit	Note
V_{IH}	Logic 1 input threshold	880	-	-	mV	-
V _{IL}	Logic 0 input threshold, not in ULP state	-	-	550	mV	-

LP-RX AC Specifications

Parameter	er Description		Тур.	Max.	Unit	Note
e _{spike}	Input pulse rejection	-	-	300	V.ps	1, 2, 3
T _{MIN}	Minimum pulse width response	20	-	-	ns	4
V_{INT}	Peak-to-peak interference voltage	-	-	200	mV	-
f _{INT}	Interference frequency	450	-	-	MHz	-

Note: (1) Time-voltage integration of a spike above VIL when being in LP-0 state or below VIH when being in LP-1 state

(2) An impulse less than this will not change the receiver state.

(3) In addition to the required glitch rejection, implementers shall ensure rejection of known RF-interferers.

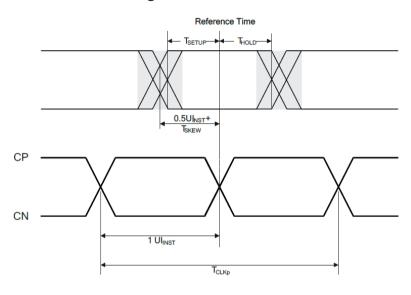
(4) An input pulse greater than this shall toggle the output.

HS-RX DC Specifications

Parameter	Description	Min.	Тур.	Max.	Unit	Note
V _{CMRXDC}	Common-mode voltage HS receive mode	70	-	330	mV	(1),(2)
V_{IDTH}	Differential input high threshold	-	-	70	mV	-
V_{IDTL}	Differential input low threshold	-70	-	-	mV	-
V _{IHHS}	Single-ended input high voltage	-	-	460	mV	(1)
V _{ILHS}	Single-ended input low voltage	-40	-	-	mV	(1)
Z _{ID}	Differential input impedance	80	100	125	Ω	-

Note: (1) Excluding possible additional RF interference of 100mV peak sine wave beyond 450MHz.

⁽²⁾ This table value includes a ground difference of 50mV between the transmitter and the receiver, the static common-mode level tolerance and variations below 450MHz


Document Title	HSD070GWW5-900001-PX Preliminary Specification	Page No.	15/25
Document No.		Revision	1.0

HS-RX AC Specifications

Parameter	Description		Тур.	Max.	Unit	Note
$\Delta V_{CMRX(HF)}$	Common mode interference beyond 450 MHz	-	-	100	mV_PP	(1)
C _{CM}	Common mode termination	-	-	60	рF	(2)

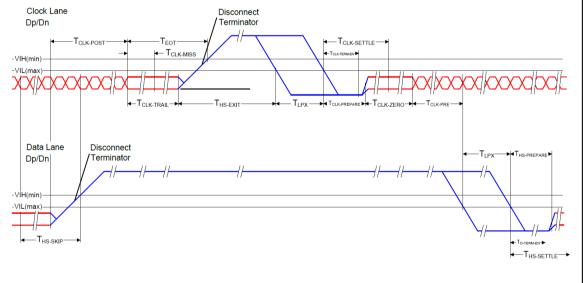
Note: (1) Δ VCMRX(HF) is the peak amplitude of a sine wave superimposed on the receiver inputs.

6.3.1.4 High-Speed Data-Clock Timing Data to Clock Timing Definitions

Parameter	Symbol	Min.	Тур.	Max.	Unit	Note
Data to Clock Setup Time [RX]	T _{SETUP[RX]}	0.15	-	-	UIINST	1
Clock to Data Hold Time [RX]	T _{HOLD[RX]}	0.15	-	-	UIINST	1

Note: (1) Total setup and hold window for receiver of 0.3*UIINST.

6.3.2 Burst Mode Data Transmission


⁽²⁾ For higher bit rates a 14pF capacitor will be needed to meet the common-mode return loss specification.

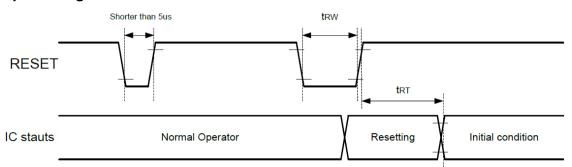
Document Title	HSD070GWW5-900001-PX Preliminary Specification	Page No.	16/25
Document No.		Revision	1.0

Parameter	Description	Min	Тур	Max	UNIT
T _{LPX}	Transmitted length of any Low-Power state period	50	-	-	ns
T _{HS-PREPARE}	Time that the transmitter drives the Data Lane LP-00 Line state immediately before the HS-0 Line state starting the HS transmission	40 + 4*UI	-	85 + 6*UI	ns
T _{HS-PREPARE} + T _{HS-ZERO}	T _{HS-PREPARE} + time that the transmitter drives the HS-0 state prior to transmitting the Sync sequence.	145 + 10*UI	-	-	ns
T _{D-TERM-EN}	Time for the Data Lane receiver to enable the HS line termination.	-	-	35 + 4*UI	ns
T _{HS-SETTLE}	Time interval during which the HS receiver shall ignore any Data Lane HS transitions.	85 + 6*UI	-	145 + 10*UI	ns
T _{HS-TRAIL}	Time that the transmitter drives the flipped differential state after last payload data bit of a HS transmission burst	max(n*8*UI, 60 + n*4*UI)	-	-	ns
T _{HS-EXIT}	Time that the transmitter drives LP-11 following a HS burst.	100	-	-	ns

6.3.3 Switching the Clock Lane between Clock Transmission and Low-Power Mode

Document Title	HSD070GWW5-900001-PX Preliminary Specification	Page No.	17/25
Document No.		Revision	1.0

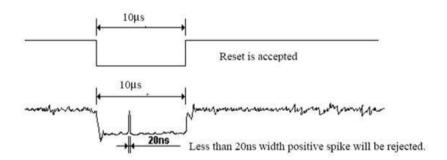
Parameter	Description	Min	Тур	Max	UNIT
T _{CLK-POST}	Time that the transmitter continues to send HS clock after the last associated Data Lane has transitioned to LP Mode.	60 + 52*UI	-	-	ns
T _{CLK-PRE}	Time that the HS clock shall be driven by the transmitter prior to any associated Data Lane beginning the transition from LP to HS mode.	8*UI	-	-	ns
T _{CLK-PREPARE}	Time that the transmitter drives the Clock Lane LP-00 Line state immediately before the HS-0 Line state starting the HS transmission.	38	-	95	ns
T _{CLK-PREPARE} + T _{CLK-ZERO}	T _{CLK-PREPARE} + time that the transmitter drives the HS-0 state prior to starting the Clock.	300	-	-	ns
T _{CLK-TERM-EN}	Time for the Clock Lane receiver to enable the HS line termination.	-	-	38	ns
T _{CLK-TRAIL}	Time that the transmitter drives the HS-0 state after the last payload clock bit of a HS transmission burst.	60	-	-	ns
T _{HS-EXIT}	Time that the transmitter drives LP-11 following a HS burst.	100	-	-	ns


6.3.4 Timings for DSI Video mode

lla	Complete		Value		l les!4
Item	Symbol Min.		Тур.	Max.	Unit
HS low pulse width	HS	10	20	30	DCK
Horizontal back porch	HBP	52	60	70	DCK
Horizontal front porch	HFP	50	60	70	DCK
Horizontal blanking period	HBLK	112	140	170	DCK
Horizontal active area	HDISP	800			DCK
Pixel Clock	PCLK	71	75	82	MHz
Vertical low pulse width	VS	2	4	40	Line
Vertical back porch	VBP	14	20	40	Line
Vertical front porch	VFP	8	20	60	Line
Vertical blanking period	VBK	24	44	180	Line
Vertical active area	-	1280			Line
Vertical Refresh rate	VRR		60		Hz

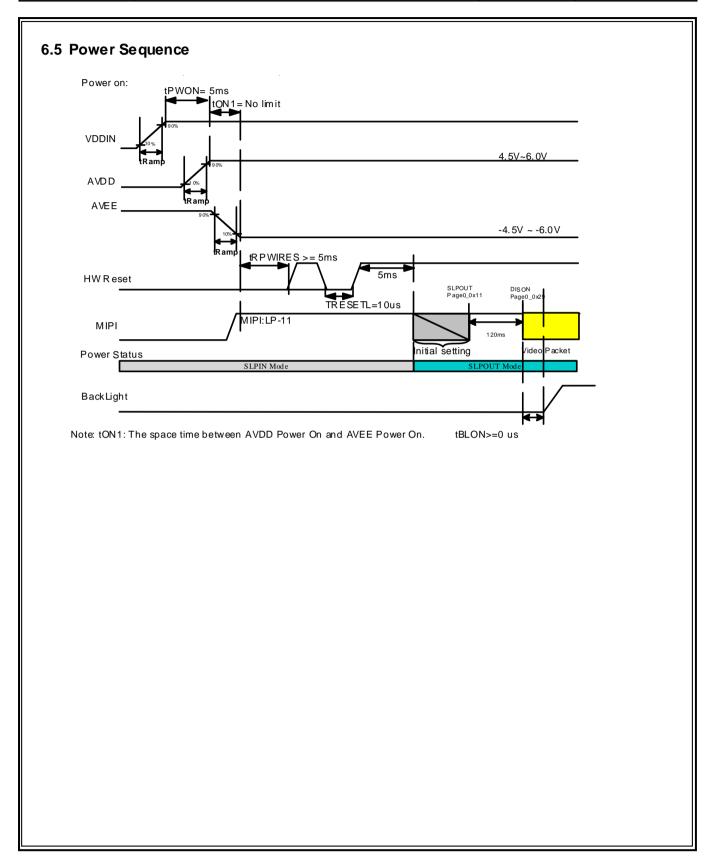
Document Title	HSD070GWW5-900001-PX Preliminary Specification	Page No.	18/25
Document No.		Revision	1.0

6.4 Reset input timings


Symbol	Parameter	Related pins	Min.	Max.	Unit
t _{RW}	Reset pulse width ⁽²⁾	RESET	10	-	μs
t _{RT}	Reset complete time ⁽³⁾	-	-	5 (Note 4)	ms
		-	-	120 (Note 5, 6)	ms

Note:

(1) Spike due to an electrostatic discharge on RESX line does not cause irregular system reset according to the table below.


RESX Pulse	Action
Shorter than 5 µs	Reset Rejected
Longer than 10 µs	Reset
Between 5 µs and 10 µs	Reset Start

- (2) During the resetting period, the display will be blanked (The display is entering blanking sequence, which maximum time is 120 ms, when Reset Starts in Sleep Out -mode. The display remains the blank state in Sleep In -mode) and then returns to Default condition for H/W reset.
- (3) Spike Rejection also applies during a valid reset pulse as shown below:

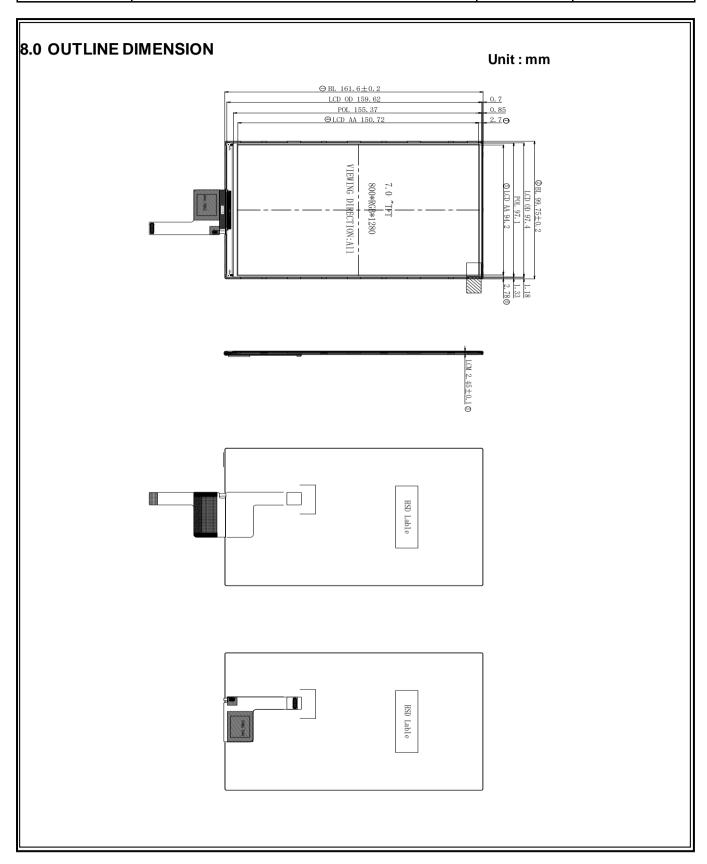
- (4) When Reset is applied during Sleep In Mode.
- (5) When Reset is applied during Sleep Out Mode.
- (6) It is necessary to wait 5msec after releasing RESX before sending commands. Also Sleep Out command cannot be sent for 120msec.
- (7) After Sleep Out Command, it is necessary to wait 120msec then send RESX.

Document Title	HSD070GWW5-900001-PX Preliminary Specification	Page No.	19/25
Document No.		Revision	1.0

Document Title	HSD070GWW5-900001-PX Preliminary Specification	Page No.	20/25
Document No.		Revision	1.0

7.0 RELIABILTY TEST ITEMS 7.1 Test condition

No.	Item	Conditions	Remark
1	High Temperature Storage	Ta=+80°C , 240hrs	1,2,3
2	Low Temperature Storage	Ta=-30°ℂ , 240hrs	1,2,3
3	High Temperature Operation	Ta=70°C , 240hrs	1,2,3
4	Low Temperature Operation	Ta=-20°ℂ ,240hrs	1,2,3
5	High Temperature and High Humidity (operation)	Ta=60°C , 90%RH, 240Hrs	1,2,3
6	Thermal Cycling Test (non operation)	-30°C (0.5hr)←→80°C (0.5hr),200cycle	1,2,3


Note1: There is no display function NG issue occurred, all the cosmetic specification is judged before the reliability stress.

Note 2: All of the function & cosmetic Judgment basis base on room temperature.

(The tested module must have enough recovery time at least 2 hours at room temperature.)

Note3: The test condition definition panel's surface temperature.

Document Title	HSD070GWW5-900001-PX Preliminary Specification	Page No.	21/25
Document No.		Revision	1.0

Document Title	HSD070GWW5-900001-PX Preliminary Specification	Page No.	22/25
Document No.		Revision	1.0

9.0 LOT MARK

9.1 Lot Mark

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Code 1,2,3,4,5,6: HannStar internal flow control code.

Code 7: production location. Code 8: production year. Code 9: production month.

Code 10,11,12,13,14,15: serial number.

Note (1) Production Year: Code 8 is defined by the last number of the year, for example

Year	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026
Mark	6	7	8	9	0	1	2	3	4	5	6

Note (2) Production Month

Month	Jan.	Feb.	Mar.	Apr.	May.	Jun.	Jul.	Aug.	Sep.	Oct	Nov.	Dec.
Mark	1	2	3	4	5	6	7	8	9	Α	В	С

9.2 Detail of Lot Mark

- (1) Below label is attached on the backside of the LCD module. See Section 8.0: Outline Dimension.
- (2) The detail of Lot Mark is attached as below.
- (3) This is subject to change without prior notice.

HSD070GWW5 HannStar

Rev: * -900001-PX 6 A0

* A O K 9 C O O O A O O O O O 3 * 16

Document Title	HSD070GWW5-900001-PX Preliminary Specification	Page No.	23/25
Document No.		Revision	1.0

10.0	P	ACKAGE SPECIFICATION
		Packing form
	10.2	TBD Pallet Drawing TBD

Document Title	HSD070GWW5-900001-PX Preliminary Specification	Page No.	24/25
Document No.		Revision	1.0

11.0 GENERAL PRECAUTION

11.1 Use Restriction

This product is not authorized for use in life supporting systems, aircraft navigation control systems, military systems and any other application where performance failure could be life-threatening or otherwise catastrophic.

11.2 Disassembling or Modification

Do not disassemble or modify the module. It may damage sensitive parts inside LCD module, and may cause scratches or dust on the display. HannStar does not warrant the module, if customers disassemble or modify the module.

11.3 Breakage of LCD Panel

- 11.3.2. If LCD panel is broken and liquid crystal spills out, do not ingest or inhale liquid crystal, and do not contact liquid crystal with skin.
- 11.3.3. If liquid crystal contacts mouth or eyes, rinse out with water immediately.
- 11.3.4. If liquid crystal contacts skin or cloths, wash it off immediately with alcohol and rinse thoroughly with water.
- 11.3.5. Handle carefully with chips of glass that may cause injury, when the glass is broken.

11.4 Electric Shock

- 11.4.1. Disconnect power supply before handling LCD module.
- 11.4.2. Do not pull or fold the LED cable.
- 11.4.3. Do not touch the parts inside LCD modules and the fluorescent LED's connector or cables in order to prevent electric shock.

11.5 Absolute Maximum Ratings and Power Protection Circuit

- 11.5.1. Do not exceed the absolute maximum rating values, such as the supply voltage variation, input voltage variation, variation in parts' parameters, environmental temperature, etc., otherwise LCD module may be damaged.
- 11.5.2. Please do not leave LCD module in the environment of high humidity and high temperature for a long time.
- 11.5.3. It's recommended to employ protection circuit for power supply.

Document Title	HSD070GWW5-900001-PX Preliminary Specification	Page No.	25/25
Document No.		Revision	1.0

11.6 Operation

- 11.6.1 Do not touch, push or rub the polarizer with anything harder than HB pencil lead.
- 11.6.2 Use fingerstalls of soft gloves in order to keep clean display quality, when persons handle the LCD module for incoming inspection or assembly.
- 11.6.3 When the surface is dusty, please wipe gently with absorbent cotton or other soft material.
- 11.6.4 Wipe off saliva or water drops as soon as possible. If saliva or water drops contact with polarizer for a long time, they may causes deformation or color fading.
- 11.6.5 When cleaning the adhesives, please use absorbent cotton wetted with a little petroleum benzine or other adequate solvent.

11.7 Mechanism

Please mount LCD module by using mounting holes arranged in four corners tightly.

11.8 Static Electricity

- 11.8.1 Protection film must remove very slowly from the surface of LCD module to prevent from electrostatic occurrence.
- 11.8.2 Because LCD module use CMOS-IC on circuit board and TFT-LCD panel, it is very weak to electrostatic discharge. Please be careful with electrostatic discharge. Persons who handle the module should be grounded through adequate methods.

11.9 Strong Light Exposure

The module shall not be exposed under strong light such as direct sunlight. Otherwise, display characteristics may be changed.

11.10 Disposal

When disposing LCD module, obey the local environmental regulations.