

SPECIFICATION

LM270WF7-SLA1

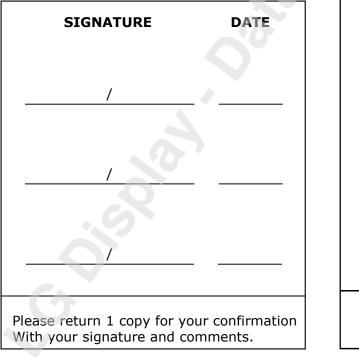
27" - FHD - LVDS

Version: 0.4 Date: 12.09.2016

Note: This specification is subject to change without prior notice

SPECIFICATION FOR APPROVAL

() Preliminary Specification
 (●) Final Specification


Title

27" Full HD TFT LCD

BUYER	
MODEL	

SUPPLIER	LG Display Co., Ltd.
*MODEL	LM270WF7
SUFFIX	SLA1

*When you obtain standard approval, please use the above model name without suffix

Ŵ

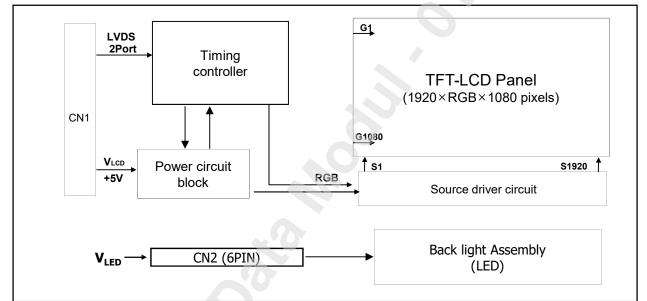
Product Specification

Contents

No		ITEM			
		COVER	1		
		CONTENTS	2		
		RECORD OF REVISIONS	3		
1		GENERAL DESCRIPTION	4		
2		ABSOLUTE MAXIMUM RATINGS	5		
3		ELECTRICAL SPECIFICATIONS	6		
	1)	ELECTRICAL CHARACTERISTICS	6		
	2)	INTERFACE CONNECTIONS	9		
	3)	SIGNAL TIMING SPECIFICATIONS	14		
	4)	SIGNAL TIMING WAVEFORMS	15		
	5)	COLOR INPUT DATA REFERNECE	16		
	6)	POWER SEQUENCE	17		
	7)	POWER DIP CONDITION	18		
4		OPTICAL SPECIFICATIONS	19		
5		MECHANICAL CHARACTERISTICS	26		
6		RELIABILITY	28		
7		INTERNATIONAL STANDARDS	29		
	1)	SAFETY	29		
	2)	Environment	29		
8		PACKING	30		
	1)	DESIGNATION OF LOT MARK	30		
	2)	PACKING FORM	30		
9		PRECAUTIONS	31		
	1)	MOUNTING PRECAUTIONS	31		
	2)	OPERATING PRECAUTIONS	32		
	3)	ELECTROSTATIC DISCHARGE CONTROL	33		
	4)	PRECAUTIONS FOR STRONG LIGHT EXPOSURE	33		
	5)	STROAGE	33		
	6)	HANDLING PRECAUTIONS FOR PROTECTION FILM	33		

S.

Product Specification


RECORD OF REVISIONS

Revision No	Revision Date	Page	Description
0.1	Jun, 15. 2016	-	First Draft, Preliminary Specifications
0.2	Jun, 30. 2016	30	Updated packing form
0.3	Aug., 01, 2016	4	Updated power consumption and weight spec.
		8	Updated LED Bar ELECTRICAL CHARACTERISTICS.
		25	Updated weight spec.
0.4	SEP., 12, 2016	26, 27	Updated the mechanical drawings.
	6		

1. General Description

LM270WF7-SLA1 is a Color Active Matrix Liquid Crystal Display with an integral Light Emitting Diode (White LED) backlight system. The matrix employs a-Si Thin Film Transistor as the active element. It is a transmissive type display operating in the normally white mode. It has a 27 inch diagonally measured active display area with Full HD resolution (1080 vertical by 1920 horizontal pixel array) Each pixel is divided into Red, Green and Blue sub-pixels or dots which are arranged in vertical stripes. Gray scale or the brightness of the sub-pixel color is determined with a 8-bit gray scale signal for each dot, thus, presenting a palette of more than 16,7M colors with Advanced-FRC(Frame Rate Control). It has been designed to apply the interface method that enables low power, high speed, low EMI. FPD Link or compatible must be used as a LVDS(Low Voltage Differential Signaling) chip. It is intended to support applications where thin thickness, wide viewing angle, low power are critical factors and graphic displays are important. It is intended to support displays where high brightness, super wide viewing angle, high color saturation, and high color are important.

Figure 1. Block diagram

<u>General i catules</u>	
Active Screen Size	27 inches(68.6cm) diagonal
Outline Dimension	613.5(H) X 356.8(V) X 12.7(D) (Typ.)
Pixel Pitch	0.3114 mm x 0.3114 mm
Pixel Format	1920 horiz. By 1080 vert. Pixels RGB stripes arrangement
Color Depth	16.7M colors
Luminance, White	300 cd/m ² (Center 1 point)
Viewing Angle(CR>10)	View Angle Free (R/L 178(Typ.), U/D 178(Typ.))
Power Consumption	Total 22.15 Watt (Typ.) (2.35 Watt @ VLCD, (19.8) Watt @Is=95mA)
Weight	2890 g(Typ. EST)
Display Operating Mode	Transmissive mode, normally Black
Panel Type	Reverse type
Surface Treatment	Anti-Glare treatment of the front polarizer (3H)

General Features

2. Absolute maximum ratings

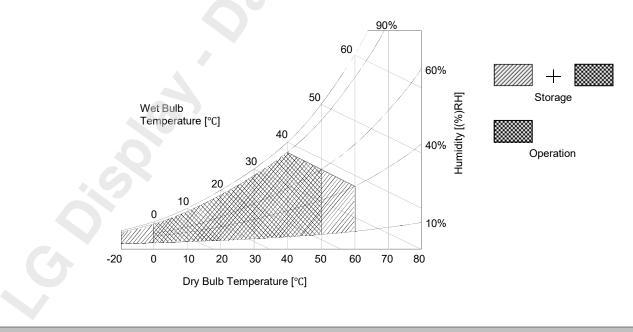
The following are maximum values which, if exceeded, may cause faulty operation or damage to the unit.

Table 1. Absolute maximum ratings

Parameter	Symbol	Val	ues	Units	Notes	
Falametei	Symbol	Min	Max	OTINS	NOLES	
Power Supply Input Voltage	V _{LCD}	-0.3	+6.0	Vdc	At 25°C	
Operating Temperature	T _{OP}	0	50	°C		
Storage Temperature	T _{ST}	-20	60	°C	40.0	
Operating Ambient Humidity	H _{OP}	10	90	%RH	1,2,,3	
Storage Humidity	H _{ST}	10	90	%RH		
LCM Surface Temperature (Operation)	T _{surface}	0	65	°C	1, 4	

Note : 1. Temperature and relative humidity range are shown in the figure below.

Wet bulb temperature should be 39 °C Max, and no condensation of water.


2. Maximum Storage Humidity is up to 40°C, 70% RH only for 4 corner light leakage Mura.

3. Storage condition is guaranteed under packing condition

4. LCM Surface Temperature should be Min. 0°C and Max. 65°C under the VLCD=5.0V,

fV=60Hz, 25°C ambient Temp. no humidity control and LED string current is typical value.

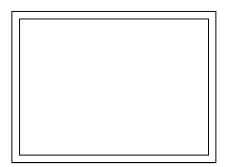
FIG. 2 Temperature and relative humidity

3. Electrical Specifications

3-1. Electrical Characteristics

It requires two power inputs. One is employed to power the LCD electronics and to drive the TFT array and liquid crystal. The second input power for the LED/Backlight, is typically generated by a LED Driver. The LED Driver is an external unit to the LCDs.

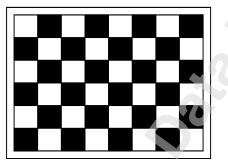
Table 2-1. ELECTRICAL CHARACTERISTICS


Parameter	Symbol		Values	Unit	Notes	
Parameter	Symbol	Min	Тур	Max	Unit	Notes
MODULE :						
Power Supply Input Voltage	VLCD	4.5	5	5.5	Vdc	5
Permissive Power Input Ripple	VLCD			400	mV _{p-p}	1
Device Cuenty Input Current	T	-	470	585	mA	2
Power Supply Input Current	ILCD	-	600	750	mA	3
Davies Consumption	Рс түр	-	2.35	2.92	Watt	2
Power Consumption	Рс мах	-	3.00	3.75	Watt	3
Rush current	Irush	-		3	А	4

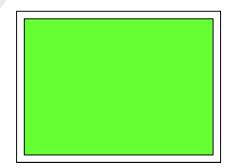
Note :

- 1. Permissive power ripple should be measured under V_{LCD} =5.0V, 25°C, fV(frame frequency)=MAX condition and At that time, we recommend the bandwidth configuration of oscilloscope is to be under 20Mhz. See the next page.
- 2. The specified current and power consumption are under the V_{LCD} =5.0V, 25± 2°C,fV=60Hz condition whereas Typical Power Pattern [Mosaic] shown in the [Figure 3] is displayed.
- 3. The current is specified at the maximum current pattern.
- 4. Maximum Condition of Inrush current : The duration of rush current is about 5ms and rising time of power Input is 500us \pm 20%.(min.).
- 5. V_{LCD} level must be measured at two points on LCM PCB between VL_{CD} (test point) and LCM Ground. The measured results need to meet the Power supply input voltage spec. (Test condition : maximum power pattern , 25± 2°C, fV=60Hz)

• Permissive Power input ripple (V_{LCD} =5.0V, 25°C, fv (frame frequency)=MAX condition)



White pattern



Black pattern

• Power consumption (V_{LCD} =5V, 25°C, fV (frame frequency=60Hz condition)

Typical power Pattern

Maximum power Pattern

FIG.3 Mosaic pattern & Green Pattern for power consumption measurement

Table 2-2. LED Bar ELECTRICAL CHARACTERISTICS

Davamatar	Gumbal	Values				Natas	
Parameter	Symbol	Min.	Тур.	Max.	Unit	Notes	
LED String Current	Is	-	(95)	(100)	mA	1, 2, 5	
LED String Voltage	Vs	(48.8)	(52.2)	(55.6)	V	1, 5	
Power Consumption	PBar	-	(19.8)	(21.1)	Watt	1, 2, 4	
LED Life Time	LED_LT	30,000	-	-	Hrs	3	

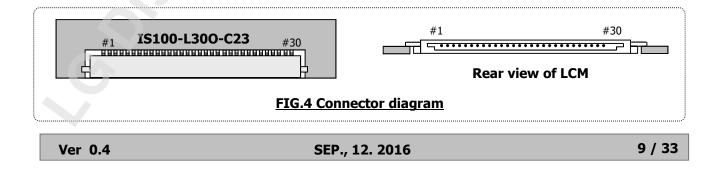
Notes) The LED Bar consists of 68 LED packages, 4 strings parallel x 17 packages (serial)

LED driver design guide

- : The design of the LED driver must have specifications for the LED in LCD Assembly.
- The performance of the LED in LCM, for example life time or brightness, is extremely influenced by the characteristics of the LED driver.
- So all the parameters of an LED driver should be carefully designed and output current should be Constant current control.
- Please control feedback current of each string individually to compensate the current variation among the strings of LEDs.
- When you design or order the LED driver, please make sure unwanted lighting caused by the mismatch of the LED and the LED driver (no lighting, flicker, etc) never occurs. When you confirm it, the LCD module should be operated in the same condition as installed in your instrument.
- 1. The specified values are for a single LED bar.
- 2. The specified current is defined as the input current for a single LED string with 100% duty cycle.
- 3. The specified voltage is input LED string and Bar voltage at typical Current 100% duty current.
- 4. The LED life time is defined as the time when brightness of LED packages become 50% or less than the initial value under the conditions at Ta = 25 2°C and LED string current is typical value.
- 5. The power consumption shown above does not include loss of external driver. The typical power consumption is calculated as PBar = Vs(Typ.) x Is(Typ.) x No. of strings. The maximum power consumption is calculated as PBar = Vs(Max.) x Is(Typ.) x No. of strings.
- 6. LED operating conditions are must not exceed Max. ratings.

Ver 0.4

3-2. Interface Connections


3-2-1. LCD Module

- LCD Connector(CN1) : IS100-L300-C23 (UJU), GT103-30S-HF15 (LSM), GT103-30S-HF15-M (LSM)
- Mating Connector : FI-X30H and FI-X30HL (Manufactured by JAE) or Equivalent

No	Symbol	Description	No	Symbol	Symbol
1	FR0M	Minus signal of odd channel 0 (LVDS)	16	SR1P	Plus signal of even channel 1 (LVDS)
2	FR0P	Plus signal of odd channel 0 (LVDS)	17	GND	Ground
3	FR1M	Minus signal of odd channel 1 (LVDS)	18	SR2M	Minus signal of even channel 2 (LVDS)
4	FR1P	Plus signal of odd channel 1 (LVDS)	19	SR2P	Plus signal of even channel 2 (LVDS)
5	FR2M	Minus signal of odd channel 2 (LVDS)	20	SCLKINM	Minus signal of even clock channel (LVDS)
6	FR2P	Plus signal of odd channel 2 (LVDS)	21	SCLKINP	Plus signal of even clock channel (LVDS)
7	GND	Ground	22	SR3M	Minus signal of even channel 3 (LVDS)
8	FCLKINM	Minus signal of odd clock channel (LVDS)	23	SR3P	Plus signal of even channel 3 (LVDS)
9	FCLKINP	Plus signal of odd clock channel (LVDS)	24	GND	Ground
10	FR3M	Minus signal of odd channel 3 (LVDS)	25	NC	No Connection (I2C Serial interface for LCM)
11	FR3P	Plus signal of odd channel 3 (LVDS)	26	NC	No Connection.(I2C Serial interface for LCM)
12	SR0M	Minus signal of even channel 0 (LVDS)	27	GND	Ground
13	SR0P	Plus signal of even channel 0 (LVDS)	28	VLCD	Power Supply +5.0V
14	GND	Ground	29	VLCD	Power Supply +5.0V
15	SR1M	Minus signal of even channel 1 (LVDS)	30	Vlcd	Power Supply +5.0V

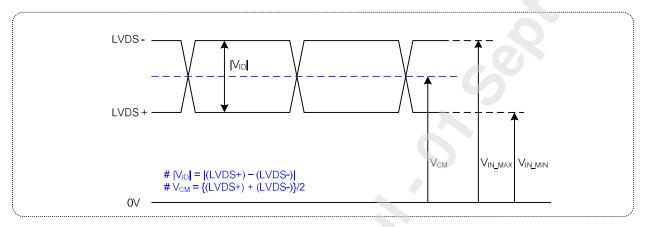
Table 3. MODULE CONNECTOR(CN1) PIN CONFIGURATION

- Note: 1. All GND(ground) pins should be connected together and to Vss which should also be connected to the LCD's metal frame.
 - 2. All VLCD (power input) pins should be connected together.
 - 3. Input Level of LVDS signal is based on the IEA 664 Standard.
 - 4. Always all LVDS signal and clock input should be 4 channels and synchronized.

Table 4. REQUIRED SIGNAL ASSIGNMENT FOR Flat Link (TI:SN75LVDS83) Transmitter

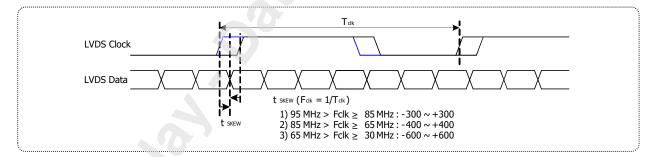
Pin #	Pin Name	Require Signal	Pin #	Pin Name	Require Signal
1	Vcc	Power Supply for TTL Input	29	GND	Ground pin for TTL
2	D5	TTL Input (R7)	30	D26	TTL Input (DE)
3	D6	TTL Input (R5)	31	T _X CLKIN	TTL Level clock Input
4	D7	TTL Input (G0)	32	PWR DWN	Power Down Input
5	GND	Ground pin for TTL	33	PLL GND	Ground pin for PLL
6	D8	TTL Input (G1)	34	PLL Vcc	Power Supply for PLL
7	D9	TTL Input (G2)	35	PLL GND	Ground pin for PLL
8	D10	TTL Input (G6)	36	LVDS GND	Ground pin for LVDS
9	Vcc	Power Supply for TTL Input	37	TxOUT3+	Positive LVDS differential data output 3
10	D11	TTL Input (G7)	38	TxOUT3 –	Negative LVDS differential data output 3
11	D12	TTL Input (G3)	39	T _X CLKOUT +	Positive LVDS differential clock output
12	D13	TTL Input (G4)	40	T _X CLKOUT -	Negative LVDS differential clock output
13	GND	Ground pin for TTL	41	T _X OUT2+	Positive LVDS differential data output 2
14	D14	TTL Input (G5)	42	T _x OUT2 –	Negative LVDS differential data output 2
15	D15	TTL Input (B0)	43	LVDS GND	Ground pin for LVDS
16	D16	TTL Input (B6)	44	LVDS Vcc	Power Supply for LVDS
17	Vcc	Power Supply for TTL Input	45	T _X OUT1+	Positive LVDS differential data output 1
18	D17	TTL Input (B7)	46	T _X OUT1 -	Negative LVDS differential data output 1
19	D18	TTL Input (B1)	47	T _X OUT0+	Positive LVDS differential data output 0
20	D19	TTL Input (B2)	48	T _X OUT0 –	Negative LVDS differential data output 0
21	GND	Ground pin for TTL Input	49	LVDS GND	Ground pin for LVDS
22	D20	TTL Input (B3)	50	D27	TTL Input (R6)
23	D21	TTL Input (B4)	51	D0	TTL Input (R0)
24	D22	TTL Input (B5)	52	D1	TTL Input (R1)
25	D23	TTL Input (RSVD)	53	GND	Ground pin for TTL
26	Vcc	Power Supply for TTL Input	54	D2	TTL Input (R2)
27	D24	TTL Input (HSYNC)	55	D3	TTL Input (R3)
28	D25	TTL Input (VSYNC)	56	D4	TTL Input (R4)

Notes : 1. Refer to LVDS Transmitter Data Sheet for detail descriptions.


2. 7 means MSB and 0 means LSB at R,G,B pixel data

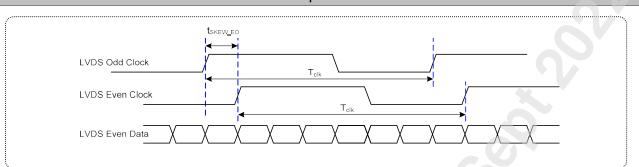
Product Specification

LVDS Input characteristics


1. DC Specification

Description	Symbol	Min	Max	Unit	Notes
LVDS Differential Voltage	V _{ID}	200	600	mV	-
LVDS Common mode Voltage	V _{CM}	1.0	1.5	V	-
LVDS Input Voltage Range	V _{IN}	0.7	1.8	V	-

Notes : Dose not have any Noise & Peaking in LVDS Signal


2. AC Specification

Description	Symbol	Min	Max	Unit	Notes
	t _{skew}	- 300	+ 300	ps	95MHz > Fclk ≥ 85MHz
LVDS Clock to Data Skew Margin	t _{skew}	- 400	+ 400	ps	85MHz > Fclk ≥ 65MHz
	t _{skew}	- 600	+ 600	ps	65MHz > Fclk ≥ 30MHz
LVDS Clock to Clock Skew Margin (Even to Odd)	t _{skew_eo}	- 1/7	+ 1/7	T _{clk}	-

Product Specification

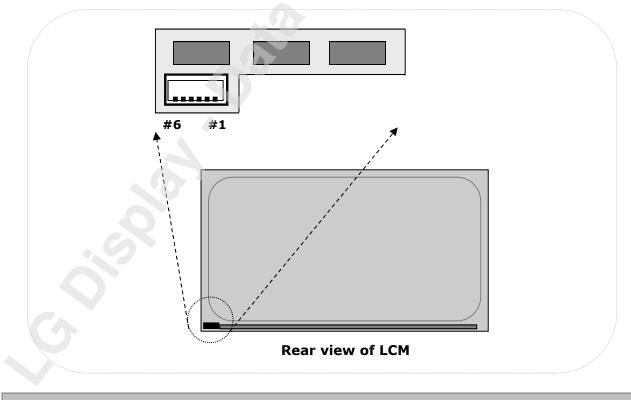
< Clock skew margin between channel >

3. Data Format

Tclk RCLK + Tclk * 3/7 Tclk * 1/7 Tclk * 3/7 Tclk * 3/7 Tclk * 3/7 Tclk * 1/7 Tclk * 3/7 Tclk * 1/7 RXin02 +/ OB4 063 062 067 067 067 067 067 067 067 067 067 067																		
NOLK TClk * 1/7 MSB R7 RXinO0 +/- OR3 OR2 OR1 OR0 OG3 OR2 OR1 OR0 OG3 OR2 OR1 OR0 OG3 OR3 OR2 OR1 OR0 OG3 OR3 OR4 OR3 OR2 OR1 OR0 OG5 OR4 OR3 OG2 OG1 OB1 OB0 OG5 OG4 OG3 OG2 OG1 OB1 OB0 OG5 R4 R3 R3 R3 R3 R3 R3 R2 R1 LSB R0 R2 R1 LSB R0 R2 R1 LSB R0 R3<				•			Tclk											
RXinO0 +/- OR3 OR2 OR1 OR0 OG0 OR5 OR4 OR3 OR2 OR1 OR0 Og0 OR5 OR4 RXinO1 +/- OG4 OG3 OG2 OG1 OB1 OB0 OG5 OG4 OG3 OG2 OG1 OB1 OB0 OG5 R4 R5 RXinO2 +/- OB5 OB4 OB3 OB2 DE VSYNC HSYNC OB5 OB4 OB3 OB2 DE VSYNC HSYNC R2 R1 RXinO3 +/- OG7 OG6 OR7 OR6 X OB7 OB6 OG7 OG6 OR7 OB6 X B7 OB6 R2 R1 LSB R0 RXinO3 +/- OG7 OG6 OR7 OR6 X OB7 OB6 OG7 OG6 OR7 OB6 X B7 B8 R1 LSB R0 * ODD = 1st Pi EVEN = 2nd Pi EVEN =	RCLK +						→	↓	[clk * 3/	7 →]			
RXinO0+/- OR3 OR2 OR1 OR0 OG0 OR5 OR4 OR3 OR2 OR1 OR0 OG0 OR6 OR4 RXinO1+/- OG4 OG3 OG2 OG1 OB1 OB0 OG3 OG2 OG1 OB1 OB0 OG5 R4 R3 RXinO2+/- OB5 OB4 OB3 OB2 DE VSYNC HSYNC OB5 OB4 OB3 OB2 DE VSYNC HSYNC RXinO3+/- OG7 OG6 OR7 OR6 X OB7 OB6 OG7 OG6 OR7 OR6 X OB7 OB6 OB7 OB6 R1 LSB R0 RXinO3+/- OG7 OG6 OR7 OR6 X OB7 OB6 OG7 OB6 OB7 OB6 R2 R1 LSB R0 RXinE1+/- EG4 EG3 EG2 EG1 EB1 EB0 EG5 EG4 EG3 EG2 EG1 EB1 ED0 EG5 R4 R3 R2 R1				, 	\frown	\leftarrow		\square				\sim				MSB		
RXinO2 +/- OB5 OB4 OB3 OB2 DE VSYNC HSYNC R3 R2 R1 R2 R1 LSB R0 R1 LSB R1 LSB R1 LSB R1 LSB R2 R1 LSB R2 R1 LSB R2 R1 R1	RXinO0 +/-	OR3	OR2		ORO	OG0	OR5	OR4	OR3	OR2			060	OR5	OR4			
RXinO2 +/- OB5 OB4 OB3 OB2 DE VSYNC HSYNC OB5 OB4 OB3 OB2 DE VSYNC HSYNC RXinO3 +/- OG7 OG6 OR7 OR6 X OB7 OB6 OG7 OG6 OR7 OR6 X OB7 OB6 R1 RXinC0 +/- ER3 ER2 ER1 ER0 EG0 ER5 ER4 ER3 ER2 ER1 ER0 EG0 ER5 ER4 R3 ER2 ER1 ER0 EG0 ER5 ER4 ER3 ER2 ER1 ER0 EG0 ER5 ER4 ER3 ER2 ER1 LSB R0 * ODD = 1st Pi EVEN = 2nd Pi RXinE1 +/- EG4 EG3 EG2 DE VSYNC HSYNC EB5 EB4 EB3 EE2 DE VSYNC HSYNC RXinE3 +/- EG7 EG6 ER7 ER6 X EB7 EB6 EG7 EG6 ER7 ER6 X EB7 EB6	RXinO1 +/-	OG4	OG3	OG2	OG1	OB1	ОВО	OG5	064	063	062	OG1	OB1	ОВО	065		R4	
KXInC3 +/- Cd/	RXinO2 +/-	OB5	0В4	OB3	0в2	DE	VSYNC	HSYNC	OB5	0В4	ОВЗ	0в2	DE	VSYNC	HSYNC			
RXinE0 +/- ER3 ER2 ER1 ER0 EG0 ER5 ER4 ER3 ER2 ER1 ER0 EG0 ER5 ER4 RXinE1 +/- EG4 EG3 EG2 EG1 EB1 EB0 EG5 EG4 EG3 EG2 EG1 EB1 ED0 EG5 EVEN = 2nd Pi RXinE2 +/- EB5 EB4 EB3 EB2 DE VSYNC HSYNC EB5 EB4 EB3 EB7 ED6 EG7 EG6 ER7 ER6 X EB7 ED6 EG7 EG6 ER7 EB6 EG7 EG6 ER7 <td>RXinO3 +/-</td> <td>OG7</td> <td>0%</td> <td>OR7</td> <td>OR6</td> <td>×</td> <td>ОВ7</td> <td>OB6</td> <td>OG7</td> <td>0%</td> <td>OR7</td> <td>OR6</td> <td>×</td> <td>OB7</td> <td>OB6</td> <td></td> <td></td> <td></td>	RXinO3 +/ -	OG7	0%	OR7	OR6	×	ОВ7	OB6	OG7	0%	OR7	OR6	×	OB7	OB6			
RXinE1 +/- EG4 EG3 EG2 EG1 EB1 EB0 EG5 EVEN = 2nd Pi RXinE2 +/- EB5 EB4 EB3 EB2 DE VSYNC HSYNC EB5 EB4 EB3 EB2 DE VSYNC HSYNC EB5 EB4 EB3 EB2 DE VSYNC HSYNC HSYNC EB5 EB4 EB7 EB6 EG7 EG6 ER7 EB6 EB7 EB6<	RXinE0 +/-	ER3	ER2	ER1	ERO	EGO	ER5	ER4	ER3	ER2	ER1	ERO	EG0	ER5	ER4			Pixel
RXinE3 +/- EG7 EG6 ER7 ER6 X EB7 EB6 EG7 EG6 ER7 ER6 X EB7 EB6	RXinE1 +/-	EG4	EG3	EG2	EG1	EB1	EB0	EG5	EG4	EG3	EG2	EG1	EB1	EBO	EG5			
	RXinE2 +/-	EB5	EB4	EB3	EB2	DE	VSYNC	HSYNC	EB5	EB4	EB3	EB2	DE	VSYNC	HSYNC			
	RXinE3 +/-	EG7	EG6	ER7	ER6	×	EB7	EB6	EG7	EG6	ER7	ER6	×	EB7	EB6			
——Previous(N-1)th Cycle —————Current(Nth) Cycle ————————————————————————————————————		——Pre	evious(N	I–1)th Cy	cle→	K		—Curre	ent(Nth)	Cycle—		\longrightarrow	←Next	(N+1)th	Cycle—			

< LVDS Data Format >

Product Specification


3-2-2. LED Interface

The LED interface connector is a model BM06B-SHJS(HF), wire-locking type manufactured by JST. The mating connector is a SHJP-06V-S(HF) or SHJP-06V-A-K(HF) and Equivalent. The pin configuration for the connector is shown in the table below.

Table 5.	LED	connector	pin	configuration

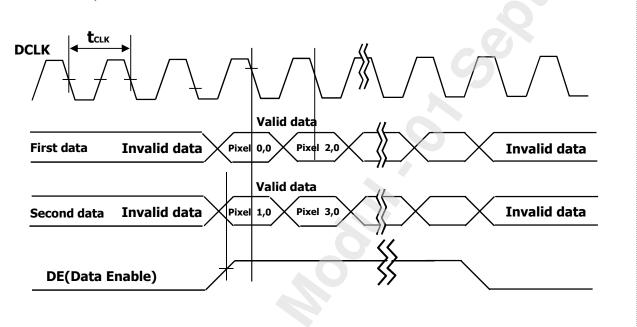
Pin	Symbol	Description	Notes
1	FB1	Channel1 Current Feedback	
2	FB2	Channel2 Current Feedback	
3	VLED	LED Power Supply	
4	VLED	LED Power Supply	
5	FB3	Channel3 Current Feedback	
6	FB4	Channel4 Current Feedback	

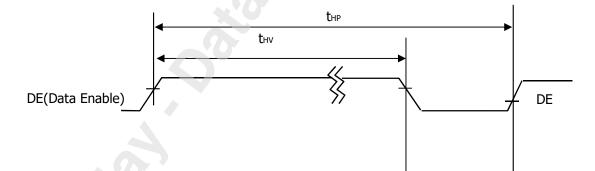
FIG. 5 Backlight connector view

3-3. Signal Timing Specifications

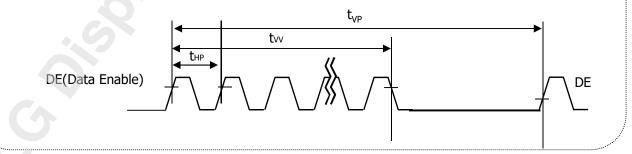
This is signal timing required at the input of the TMDS transmitter. All of the interface signal timing should be satisfied with the following specifications for it's proper operation.

ITEM	Symbol		Min	Тур	Max	Unit	Note
DCLK	Period	tCLK	10.96	13.89	16.7	ns	
DCLK	Frequency	-	60	72	91.28	MHz	5
	Period	tHP	1024	1088	1120	tCLK	
	Horizontal Valid	tHV	960	960	960	tCLK	
Hsync	Horizontal Blank	tHB	64	128	160		
	Frequency	fH	64	66	83	KHz	
	Period	tVP	1090	1100	1160	tHP	
	Vertical Valid	tVV	1080	1080	1080	tHP	
Vsync	Vertical Blank	tVB	10	20	80	tHP	
	Frequency	fV	50	60	75	Hz	


- Note: Hsync period and Hsync width-active should be even number times of tCLK. If the value is odd number times of tCLK, display control signal can be asynchronous. In order to operate this LCM a Hsync, Vsync, and DE(data enable) signals should be used.
 - 1. The performance of the electro-optical characteristics may be influenced by variance of the vertical refresh rates.
 - 2. Vsync and Hsync should be keep the above specification.
 - 3. Hsync Period, Hsync Width, and Horizontal Back Porch should be any times of of character number(4).
 - 4. The polarity of Hsync, Vsync is not restricted.
 - 5. The Max frequency of 1920X1080 resolution is 87.5Mhz



3-4. Signal Timing Waveforms


1. DCLK , DE, DATA waveforms

2. Horizontal waveform

3. Vertical waveform

3-5. Color Input Data Reference

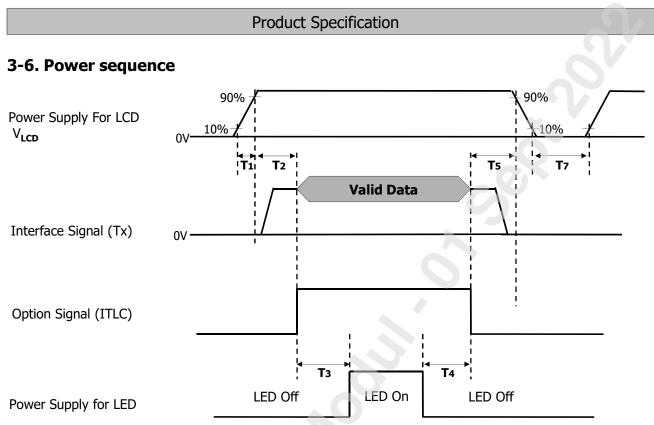

The Brightness of each primary color(red,green,blue) is based on the 8-bit gray scale data input for the color; the higher the binary input, the brighter the color. The table below provides a reference for color versus data input.

Table 7. COLOR DATA REFERENCE

											_	I	npu	t Co	olor	Da	ta			S						
	Color					RE	D							GRI	EEN	I			2			BL	UE			
			MS		DE	D4	D 2	D D	R1		MS		CE	<u> </u>	<u> </u>	G2	-	_	MS P7		DE	D 4	D 2	D D		.SB
	Black		R7	R0	кэ 0	R4 0	K 3	RZ	0	KU 0	G 7 0	0	G 5 0	G4 0	0	G2 0	GT 0	0	В / 0	B6	вэ 0	В4 0	вз 0	в 2 0	В1 0	во 0
	Red (255)		1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green (255)		0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	Blue (255)		0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	1	1	1	1	1	1	1	1
Basic Color	Cyan		0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Magenta		1	1	1	1	1	1	1	1	1 0	1	0	0	0	0	0	0	1	1	1	1	1	1	1	1
	Yellow		1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	1
	White		1	1	1	1	1	1	-	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	RED (000)	Dark	1 0	0	0	0	0	0	0	0	1 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		Dark	0			0	0	_	0		0	0	0	0	0	0	0		0	0	0	0				0
RED	RED (001)		U	0	0	-		0		1	U	0	U			0	0	0		0	0		0	0	0	0
RED										•	0	0	0			•	•	•		•	•			•		0
	RED (254)		1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	RED (255)		1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	GREEN (000)	Dark	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	GREEN (001)		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
GREEN																										
	GREEN (254)		0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0
	GREEN (255)		0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	BLUE (000)	Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	BLUE (001)		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
BLUE							•																			
	BLUE (254)		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0
	BLUE (255)		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1

Ver 0.4

Table 8. POWER SEQUENCE

Parameter		Values		Units
Falameter	Min	Тур	Max	Units
T1	0.5	-	10	ms
T2	0.01	-	50	ms
Т3	500	-	-	ms
T4	200	-	-	ms
T5	0.01	-	50	ms
Τ7	1000		-	ms

Notes: 1. Recommend to follow Power sequence at these case

- AC/DC Power On/Off

- Mode change (Resolution, frequency, timing, sleep mode, Color depth change, etc.)

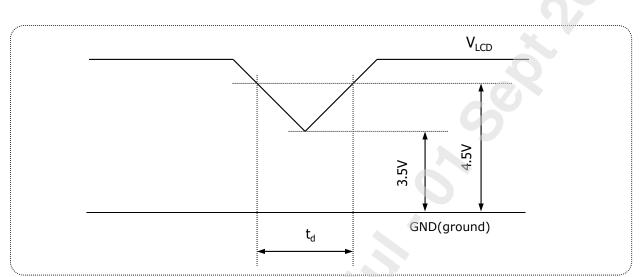
If not to follow power sequence, there is a risk of abnormal display.

2. Please avoid floating state of interface signal at invalid period.

3. When the interface signal is invalid, be sure to pull down the power supply for LCD V_{LCD} to 0V.

4. The invalid signal means out of the signal timing specification which define as page 14.

5. The above power sequence should be satisfied the basic power on/off and resolution, timing transition.


6. LED power must be turn on after power supply for LCD and interface signal are valid.

7. If VLCD Power is Changed during on status, be sure to Pull down the LED Power on to 0V

Product Specification

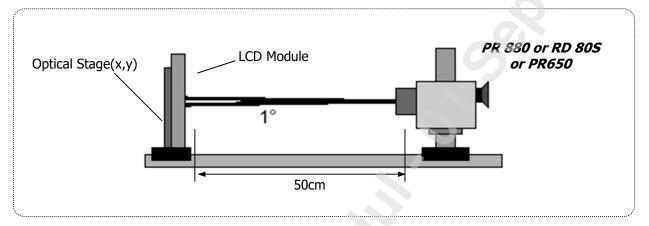
3-7. V_{LCD} Power Dip Condition

FIG.6 Power dip condition

1) Dip condition

 $3.5V \leq \! V_{LCD} \! < 4.5V$, $t_d \! \leq \! 20ms$

2) V_{LCD}< 3.5V


 V_{LCD} -dip conditions should also follow the Power On/Off conditions for supply voltage.

4. Optical Specifications

Optical characteristics are determined after the unit has been 'ON' for approximately 30 minutes in a dark environment at 25±2°C. The values specified are at an approximate distance 50cm from the LCD surface at a viewing angle of Φ and θ equal to 0 ° and aperture 1 degree.

FIG. 1 presents additional information concerning the measurement equipment and method.

FIG.7 Optical Characteristic Measurement Equipment and Method

4-1. 2D Optical specifications

Table 9.	OPTICAL	CHARACTERISTICS	
----------	---------	-----------------	--

(Ta=25 °C, V_{LCD} =5V, f_V =60Hz Dclk=144MHz, I_S =95 mA)

Daman	.	Cumhal	P.	Values		Unite	Natas
Parame	ter	Symbol	Min	Тур	Max	Units	Notes
Contrast Ratio		CR	700	1000	-		1
Surface Luminance, v	vhite	L _{WH}	250	300	-	cd/m ²	2
Luminance Variation		δ _{WHITE}	75	-	-	%	3
Response Time	Gray To Gray	T _{GTG_AVR}	-	14	25	ms	4
	RED	Rx		0.653			
		Ry]	0.336]		
	GREEN	Gx]	0.322			
Color Coordinates [CIE1931]		Gy	Тур	0.609	Тур		
(By PR650)	BLUE	Bx	-0.03	0.152	+0.03		
		Ву]	0.060]		
	WHITE	Wx		0.313			
		Wy]	0.329			
Color Shift	Horizontal	θ_{CST_H}	-	140	-	Degree	5
(Avg. ∆u′v′ < 0.02)	Vertical	$\theta_{\text{CST},V}$	-	100	-	Degree	5
Viewing Angle (CR>1	0)	_					
Conoral	Horizontal	θ _H	170	178	-	Degree	6
General	Vertical	θ_{V}	170	178	-	Degree	6
Gray Scale		-		2.2			7

Ver 0.4

Notes 1. Contrast Ratio(CR) is defined mathematically as : (By PR880)

 $Contrast Ratio = \frac{Surface Luminance with all white pixels}{Surface Luminance with all black pixels}$

It is measured at center point(Location P1)

- 2. Surface luminance(LwH) is luminance value at Center 1 point(P1) across the LCD surface 50cm from the surface with all pixels displaying white. For more information see FIG.8 (By PR880)
- 3. The variation in surface luminance , δ WHITE is defined as : (By PR880)

$$\delta_{WHITE} = \frac{\text{Minimum}(L_{P1}, L_{P2}, \dots, L_{P9})}{\text{Maximum}(L_{P1}, L_{P2}, \dots, L_{P9})} \times 100$$

Where L1 to L9 are the luminance with all pixels displaying white at 9 locations. For more information see FIG.8

- 4. Gray to gray response time is the time required for the display to transition from gray to gray. For additional information see Table 10. *(By RD805)*
- 5. Color shift is the angle at which the average color difference for all Macbeth is lower than 0.02. For more information see FIG.9 (*By EZ Contrast*)

- Color difference ($\Delta u'v'$)

$$u' = \frac{4x}{-2x + 12y + 3} \qquad v' = \frac{9y}{-2x + 12y + 3} \qquad \Delta u'v' = \sqrt{(u'_1 - u'_2)^2 + (v'_1 - v'_2)^2}$$
$$Avg(\Delta u'v') = \frac{\sum_{i=1}^{24} (\Delta u'v')i}{24} \qquad u'1, v'1 : u'v' \text{ value at viewing angle direction} \\ u'2, v'2 : u'v' \text{ value at front } (\theta=0) \\ i : \text{Macbeth chart number (Define 23 page)}$$

- Pattern size : 25% Box size

- Viewing angle direction of color shift : Horizontal, Vertical

6. Viewing angle is the angle at which the contrast ratio is greater than 10. The angles are determined for the horizontal or x axis and the vertical or y axis with respect to the z axis which is normal to the LCD surface. For more information see FIG.10 (*By PR880*)

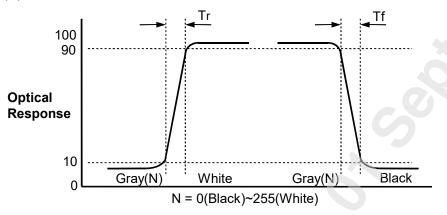
7. Gamma Value is approximately 2.2. For more information see Table 11.

H

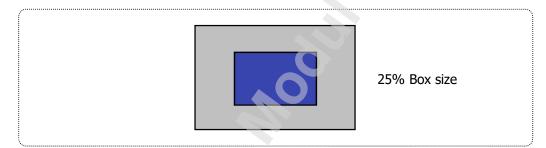
Measuring point for surface luminance & measuring point for luminance variation.

FIG.8 Measure Point for Luminance

The Gray to Gray response time is defined as the following figure and shall be measured by switching the input signal for "Gray To Gray ".


- Gray step : 5 Step
- TGTG_AVR is the total average time at rising time and falling time for "Gray To Gray".
- if system use ODC (Over Driving Circuit) function, Gray to Gary response time may be 5ms~8ms GtG * it depends on Overshoot rate.

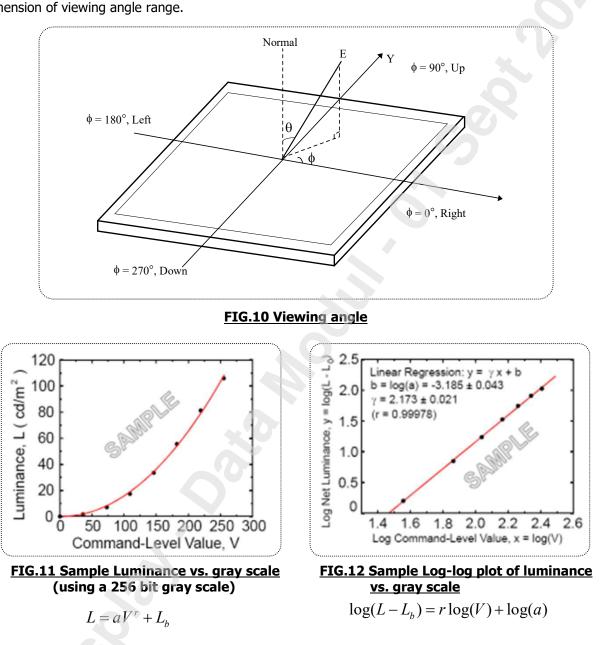
Grow to G			R	ising Tim	е	
Gray to G	lay	G255	G191	G127	G63	G0
Falling Time	G255					
R	G191					
	G127			\backslash		
	G63					
	G0					\backslash


Table. 10 GTG Gray Table

G to G(BW) Response time is defined as the following figure and shall be measured by switching the input signal for "Gray(N)" and "Black or White".

Color shift is defined as the following test pattern and color.

FIG.9 Color Shift Test Pattern


Average RGB values in Bruce RGB for Macbeth Chart

	Dark skin (i=1)	Light skin	Blue sky	Foliage	Blue flower	Bluish green
R	98	206	85	77	129	114
G	56	142	112	102	118	199
В	45	123	161	46	185	178
	Orange	Purplish blue	Moderate red	Purple	Yellow green	Orange yellow
R	219	56	211	76	160	230
G	104	69	67	39	193	162
В	24	174	87	86	58	29
	Blue	Green	Red	Yellow	Magenta	Cyan
R	26	72	197	241	207	35
G	32	148	27	212	62	126
В	145	65	37	36	151	172
	White	Neutral 8	Neutral 6.5	Neutral 5	Neutral 3.5	Black
R	240	206	155	110	63	22
G	240	206	155	110	63	22
В	240	206	155	110	63	22
V	/er 0.4		SEP., 12	. 2016		22 / 33

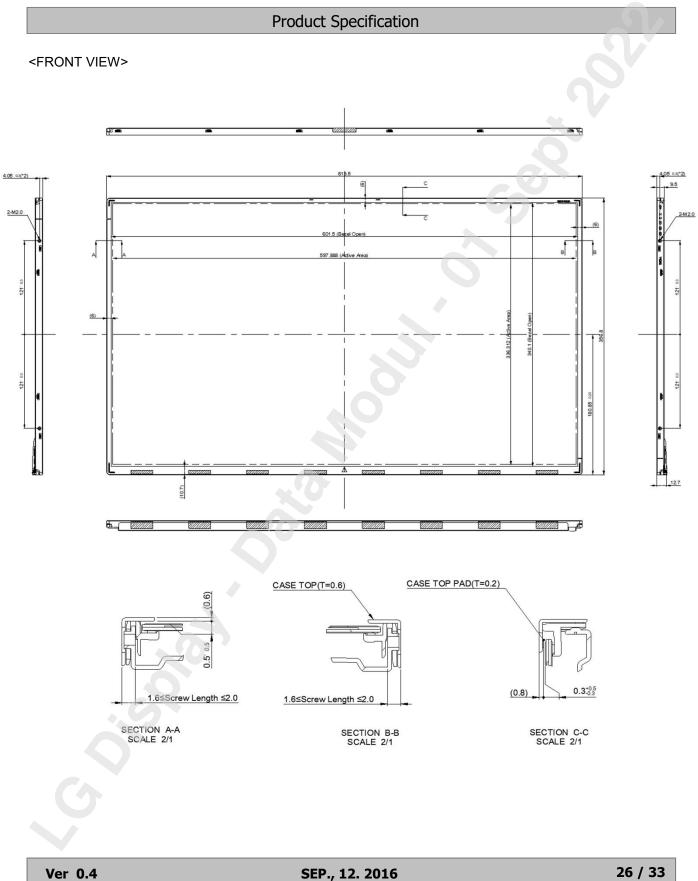
Product Specification

Dimension of viewing angle range.

Here the Parameter α and γ relate the signal level V to the luminance L. The GAMMA we calculate from the log-log representation (FIG.11)

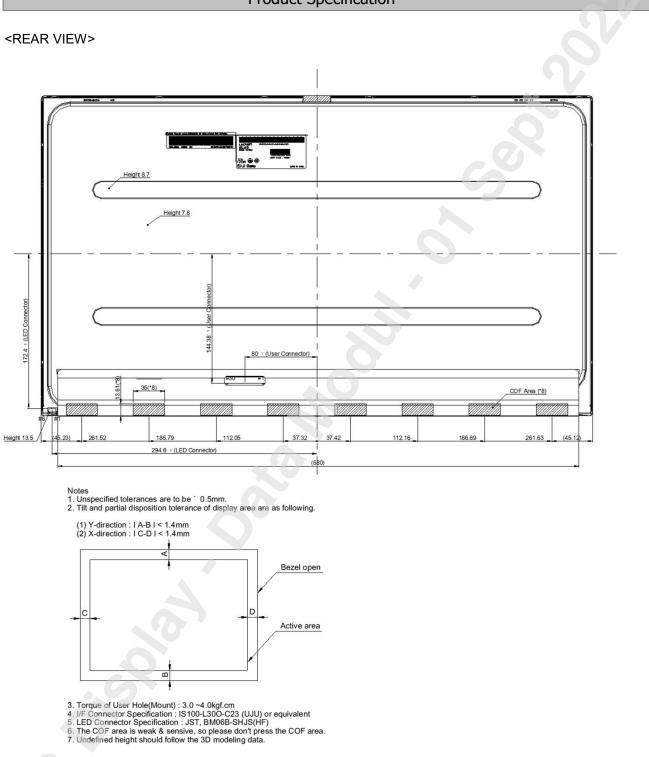
Table 11. Gray Scale Specification

0 15	0.10
15	
	0.30
31	1.08
47	2.50
63	4.72
79	7.70
95	11.49
111	16.20
127	21.66
143	28.20
159	35.45
175	43.80
191	53.00
207	63.30
223	74.48
239	86.80
255	100
175 191 207 223	43.80 53.00 63.30 74.48


5. Mechanical Characteristics

The contents provide general mechanical characteristics. In addition the figures in the next page are detailed mechanical drawing of the LCD.

	Horizontal	613.5mm					
Outline Dimension	Vertical	356.8mm					
	Depth	9.5mm (UP) / 12.7mm (DOWN)					
Bezel Area	Horizontal	601.5mm					
Dezel Area	Vertical	340.1mm					
	Horizontal	597.888mm					
Active Display Area	Vertical	336.312mm					
Weight	Typ : 2890g, Max : 3035g						
Surface Treatment	Anti-Glare treatment of the front polarizer (3H)						


Notes : Please refer to a mechanic drawing in terms of tolerance at the next page.

Product Specification

LGD Highly recommendation :

System chassis or frame should be designed to keep the IPS Panel flat as it is vulnerable to panel light-leakage caused by deformation.

6. Reliability

Environment test condition

No	Test Item	Condition	Notes
1	High temperature storage test	Ta= 60°C 240h	1
2	Low temperature storage test	Ta= -20°C 240h	1
3	High temperature operation test	Ta= 50°C 50%RH 240h	1
4	Low temperature operation test	Ta= 0°C 240h	1
5	Vibration test (non-operating)	Wave form : random Vibration level : 1.00G RMS Bandwidth : 10-300Hz Duration : X, Y, Z, 10 min One time each direction	
6	Shock test (non-operating)	Shock level : 100G Waveform : half sine wave, 2ms Direction : $\pm X$, $\pm Y$, $\pm Z$ One time each direction	
7	Humidity condition Operation	Ta= 40 °C ,90%RH	
8	Altitude operating storage / shipment	0 - 10,000 feet(3,048m) 0 - 40,000 feet(12,192m)	
9	Maximum Storage Humidity for 4 corner light leakage Mura.	Max 70%RH , Ta=40°C	

Note 1. Result Evaluation Criteria:

TFT-LCD panels test should take place after cooling enough at room temperature. In the standard condition, there should be no particular problems that may affect the display function.

※. T_a= Ambient Temperature

7. International Standards

7-1. Safety

- a) UL 60950-1, Underwriters Laboratories Inc. Information Technology Equipment - Safety - Part 1 : General Requirements.
- b) CAN/CSA-C22.2 No. 60950-1-07, Canadian Standards Association.
 Information Technology Equipment Safety Part 1 : General Requirements.
- c) EN 60950-1, European Committee for Electrotechnical Standardization (CENELEC). Information Technology Equipment - Safety - Part 1 : General Requirements.
- d) IEC 60950-1, The International Electrotechnical Commission (IEC). Information Technology Equipment - Safety - Part 1 : General Requirements

7-2. Environment

a) RoHS, Directive 2011/65/EU of the European Parliament and of the council of 8 June 2011

8. Packing

8-1. Designation of Lot Mark

a) Lot Mark

A,B,C : SIZE(INCH)
E : MONTH

D : YEAR F ~ M : SERIAL NO.

Note

1. YEAR

Year	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020
Mark	A	В	С	D	E	F	G	Н	J	К

2. MONTH

Month	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Mark	1	2	3	4	5	6	7	8	9	А	В	С

b) Location of Lot Mark

Serial No. is printed on the label. The label is attached to the backside of the LCD module. This is subject to change without prior notice.

8-2. Packing Form

- a) Package quantity in one box :10-LCMs (1 Module is packed in 1 AL Bag.)
- b) Box Size :355 (L) X 700(W) X430(H)

9. PRECAUTIONS

Please pay attention to the followings when you use this TFT LCD module.

9-1. MOUNTING PRECAUTIONS

- (1) You must mount a module using holes arranged in four corners or four sides.
- (2) You should consider the mounting structure so that uneven force (ex. Twisted stress) is not applied to the module. And the case on which a module is mounted should have sufficient strength so that external force is not transmitted directly to the module.
- (3) Please attach the surface transparent protective plate to the surface in order to protect the polarizer. Transparent protective plate should have sufficient strength in order to the resist external force.
- (4) You should adopt radiation structure to satisfy the temperature specification.
- (5) Acetic acid type and chlorine type materials for the cover case are not desirable because the former generates corrosive gas of attacking the polarizer at high temperature and the latter causes circuit break by electro-chemical reaction.
- (6) Do not touch, push or rub the exposed polarizers with glass, tweezers or anything harder than HB pencil lead. And please do not rub with dust clothes with chemical treatment. Do not touch the surface of polarizer for bare hand or greasy cloth.(Some cosmetics are detrimental to the polarizer.)
- (7) When the surface becomes dusty, please wipe gently with absorbent cotton or other soft materials like chamois soaks with petroleum benzene. Normal-hexane is recommended for cleaning the adhesives used to attach front / rear polarizers. Do not use acetone, toluene and alcohol because they cause chemical damage to the polarizer.
- (8) Wipe off saliva or water drops as soon as possible. Their long time contact with polarizer causes deformations and color fading.
- (9) Do not open the case because inside circuits do not have sufficient strength.
- (10) As The IPS panel is sensitive & slim, please recommend the metal frame of the system supports the panel by the double side-mount.

Ver 0.4

9. PRECAUTIONS

Please pay attention to the followings when you use this TFT LCD module.

9-2. OPERATING PRECAUTIONS

- (1) The spike noise causes the mis-operation of circuits. It should be lower than following voltage : V=±200mV(Over and under shoot voltage)
- (2) Response time depends on the temperature.(In lower temperature, it becomes longer.)
- (3) Brightness depends on the temperature. (In Higher temperature, it becomes lower.) And in lower temperature, response time(required time that brightness is stable after turned on) becomes longer.
- (4) Be careful for condensation at sudden temperature change. Condensation makes damage to polarizer or electrical contacted parts. And after fading condensation, smear or spot will occur.
- (5) When fixed patterns are displayed for a long time, remnant image is likely to occur.
- (6) Module has high frequency circuits. Sufficient suppression to the electromagnetic interference shall be done by system manufacturers. Grounding and shielding methods may be important to minimized the interference.
- (7) Please do not give any mechanical and/or acoustical impact to LCM. Otherwise, LCM can't be operated its full characteristics perfectly.
- (8) A screw which is fastened up the steels should be a machine screw. (if not, it causes metallic foreign material and deal LCM a fatal blow)
- (9) Please do not set LCD on its edge.
- (10) When LCMs are used for public display defects such as Yogore, image sticking can not be guaranteed.
- (11) LCMs cannot support "Interlaced Scan Method"
- (12) When this reverse model is used as a forward-type model (PCB on top side), LGD can not guarantee any defects of LCM.
- (13) Please conduct image sticking test after 2-hour aging with Rolling Pattern and normal temperature.(25~40°C)

Product Specification

9-3. ELECTROSTATIC DISCHARGE CONTROL

Since a module is composed of electronic circuits, it is not strong to electrostatic discharge. Make certain that treatment persons are connected to ground through wrist band etc. And don't touch interface pin directly.

9-4. PRECAUTIONS FOR STRONG LIGHT EXPOSURE

Strong light exposure causes degradation of polarizer and color filter.

9-5. STORAGE

When storing modules as spares for a long time, the following precautions are necessary.

- (1) Store them in a dark place. Do not expose the module to sunlight or fluorescent light. Keep the temperature between 5°C and 35°C at normal humidity.
- (2) The polarizer surface should not come in contact with any other object.It is recommended that they be stored in the container in which they were shipped.

9-6. HANDLING PRECAUTIONS FOR PROTECTION FILM

- (1) The protection film is attached to the bezel with a small masking tape. When the protection film is peeled off, static electricity is generated between the film and polarizer. This should be peeled off slowly and carefully by people who are electrically grounded and with well ionblown equipment or in such a condition, etc.
- (2) When the module with protection film attached is stored for a long time, sometimes there remains a very small amount of glue still on the bezel after the protection film is peeled off.
- (3) You can remove the glue easily. When the glue remains on the bezel surface or its vestige is recognized, please wipe them off with absorbent cotton waste or other soft material like chamois soaked with normal-hexane.

DATA MODUL

ALL TECHNOLOGIES. ALL COMPETENCIES. ONE SPECIALIST.

DATA MODUL AG Landsberger Straße 322 DE-80687 Munich

Phone: +49-89-56017-0

DATA MODUL WEIKERSHEIM GMBH

Lindenstraße 8 DE-97990 Weikersheim Phone: +49-7934-101-0

More information and worldwide locations can be found at DATA MODUL AG I www.data-modul.com