

SPECIFICATION

TCG104SVLQAPNN-AN20 10.4" - SVGA - LVDS

Version: 0.1

Date: 16.10.2014

Note: This specification is subject to change without prior notice

www.data-modul.com

SPEC

Spec No.	TQ3C-8EAF0-E1YAH38-01
Date	October 16, 2014

TYPE: TCG104SVLQAPNN-AN20

< 10.4 inch SVGA transmissive color TFT with LED backlight and constant current circuit for LED backlight>

CONTENTS

- 1. Application
- 2. Construction and outline
- 3. Mechanical specifications
- 4. Absolute maximum ratings
- 5. Electrical characteristics
- 6. Optical characteristics
- 7. Interface signals
- 8. Input timing characteristics
- 9. Lot number identification
- 10. Warranty
- 11. Precautions for use
- 12. Reliability test data
- 13. Outline drawing

KYOCERA DISPLAY CORPORATION

This specification is subject to change without notice.

Consult Kyocera before ordering.

Original	Designed by: Engineering dept.			Confirmed by: QA dept.	
Issue Date	Prepared	Checked	Approved	Checked	Approved
June 19, 2012	K. Janimuka	y Yamazaki	W. Yano	O. Sato	I-Hamars

Spec No.	Part No.	Page
TQ3C-8EAF0-E1YAH38-01	TCG104SVLQAPNN-AN20	-

Warning

- 1. This Kyocera LCD module has been specifically designed for use only in electronic devices and industrial machines in the area of audio control, office automation, industrial control, home appliances, etc. The module should not be used in applications where the highest level of safety and reliability are required and module failure or malfunction of such module results in physical harm or loss of life, as well as enormous damage or loss. Such fields of applications include, without limitation, medical, aerospace, communications infrastructure, atomic energy control. Kyocera expressly disclaims any and all liability resulting in any way to the use of the module in such applications.
- 2. Customer agrees to indemnify, defend and hold Kyocera harmless from and against any and all actions, claims, damages, liabilities, awards, costs, and expenses, including legal expenses, resulting from or arising out of Customer's use, or sale for use, or Kyocera modules in applications.

Caution

1. Kyocera shall have the right, which Customer hereby acknowledges, to immediately scrap or destroy tooling for Kyocera modules for which no Purchase Orders have been received from the Customer in a two-year period.

Spec No.	Part No.	Page
TQ3C-8EAF0-E1YAH38-01	TCG104SVLQAPNN-AN20	-

Revision record

	Revision record						
Llate -		Designed by : En				Confirmed by : QA dept.	
		Prep	ared	Checked	Approved	Checked	Approved
October 16, 2014		K. Yas	nimuka	y Yamazaki	W. Yano	O. Sato	1. Hamars
Rev.No.	Date	Page			Descripti	ons	
01	Oct 16,2014	_	chang	e KYOCERA C	ORPORATION	LCD DIVISIO	
			→KYOCERA DISPLAY CORPORATION				
		5	5-2. C	onstant current			
				change Operat	ing life time T	$yp70,000h \rightarrow 10$	00,000h
		1	L				

Spec No.	Part No.	Page
TQ3C-8EAF0-E1YAH38-01	TCG104SVLQAPNN-AN20	1

1. Application

This document defines the specification of TCG104SVLQAPNN-AN20. (RoHS Compliant)

2. Construction and outline

LCD : Transmissive color dot matrix type TFT

Backlight system : LED

Polarizer : Anti-Glare treatment

Interface : LVDS

Additional circuit : Timing controller, Power supply (3.3V input)

: with Constant current circuit for LED Backlight(12V input)

3. Mechanical specifications

Item	Specification	Unit
Outline dimensions 1)	240.7(W)×(180.2)(H)×9(D)	mm
Active area	211.2(W)×158.4(H) (26.4cm/10.4 inch(Diagonal))	mm
Dot format	800×(R,G,B)(W)×600(H)	dot
Dot pitch	0.088(W)×0.264(H)	mm
Base color 2)	Normally Black	-
Mass	470	g

- 1) Projection not included. Please refer to outline for details.
- 2) Due to the characteristics of the LCD material, the color varies with environmental temperature.

Spec No.	Part No.	Page
TQ3C-8EAF0-E1YAH38-01	TCG104SVLQAPNN-AN20	2

4. Absolute maximum ratings

4-1. Electrical absolute maximum ratings

	Item	Symbol	Min.	Max.	Unit
Supply voltag	ge(+3.3V)	$V_{ m DD}$	-0.3	4.0	V
Supply voltag	ge(+12V)	V_{IN}	-0.3	14.0	V
	RxINi+, RxINi- 1) 2)	V_{I1}	-0.3	2.8	V
Input signal	CK IN+, CK IN- 2)	V_{I2}	-0.3	2.8	V
voltage	SELLVDS	V_{I3}	-0.3	V_{DD} +0.5	V
	BLBRT, BLEN	V_{I4}	-0.3	V_{IN}	V

- 1) i=0,1,2,3
- 2) V_{DD} must be supplied correctly within the range described in 5-1.

4-2. Environmental absolute maximum ratings

Item		Symbol	Min.	Max.	Unit
Operating temperature	1)	T_{OP}	-20	70	$^{\circ}\mathrm{C}$
Storage temperature	2)	Тѕто	-30	80	$^{\circ}\mathrm{C}$
Operating humidity	3)	Нор	10	4)	%RH
Storage humidity	3)	Нѕто	10	4)	%RH
Vibration		-	5)	5)	-
Shock		-	6)	6)	-

- 1) Operating temperature means a temperature which operation shall be guaranteed. Since display performance is evaluated at 25°C, another temperature range should be confirmed.
- 2) Temp. = -30°C < 48h, Temp. = 80°C < 168h Store LCD at normal temperature/humidity. Keep them free from vibration and shock. An LCD that is kept at a low or a high temperature for a long time can be defective due to other conditions, even if the low or high temperature satisfies the standard. (Please refer to "Precautions for Use" for details.)
- 3) Non-condensing
- Temp. ≤ 40°C, 85%RH Max.
 Temp. > 40°C, Absolute humidity shall be less than 85%RH at 40°C.

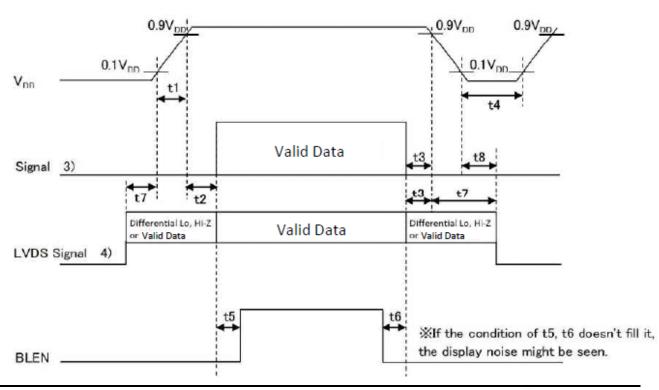
5)

Frequency	10∼55 Hz	Acceleration value
Vibration width	0.15mm	$(0.3\sim 9 \text{ m/s}^2)$
Interval	10-55-10	Hz 1 minutes

2 hours in each direction X, Y, Z (6 hours total) EIAJ ED-2531

6) Acceleration: 490 m/s², Pulse width: 11 ms 3 times in each direction: ±X, ±Y, ±Z EIAJ ED-2531

Spec No.	Part No.	Page
TQ3C-8EAF0-E1YAH38-01	TCG104SVLQAPNN-AN20	3

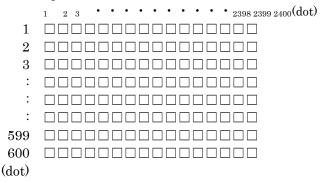

5. Electrical characteristics

5-1. LCD

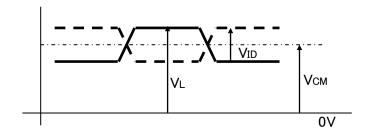
Temp. = $-20 \sim 70$ °C

						remp.	20 10 0
Item		Symbol	Condition	Min.	Тур.	Max.	Unit
Supply voltage	1)	$V_{ m DD}$	-	3.0	3.3	3.6	V
Current consumption		I_{DD}	2)	-	250	300	mA
Permissive input ripple volt	age	V_{RP}	V _{DD} =3.3V	-	-	100	mVp-p
I	9)	V_{IL}	"Low" level	0	-	0.8	V
Input signal voltage	3)	V_{IH}	"High" level	2.0	-	$V_{ m DD}$	V
Install and a	9)	I_{OL}	V ₁₃ =0V	-10	-	10	μ A
Input reek current	3)	Іон	V _{I3} =3.3V	-	-	400	μ A
LVDS Input voltage	4)	$V_{\rm L}$	-	0	-	1.9	V
Differential input voltage	4)	V_{ID}	-	250	350	450	mV
Differential input	4) 5)	V_{TL}	"Low" level	V _{CM} -100	-	-	mV
threshold voltage	4) 5)	V_{TH}	"High" level	-	-	V _{CM} +100	mV
Terminator		R_1	-	•	100	-	Ω
		t1	-	0.1	-	10	ms
		t2	-	0	-	-	ms
		t3	-	0	-	-	ms
V	1) 6)	t4	-	1.0	-	-	s
V _{DD} -turn-on conditions	1) 6)	t5	-	200		-	ms
		t6	-	200	-	-	ms
		t7	-	0	-	10	s
		t8	-	0	-	-	ms

1) V_{DD}-turn-on conditions



Spec No.	Part No.	Page
TQ3C-8EAF0-E1YAH38-01	TCG104SVLQAPNN-AN20	4


2) Display pattern:

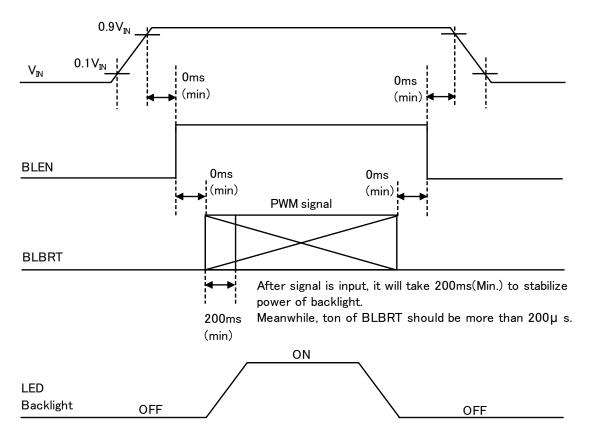
$$V_{\rm DD}$$
 = 3.3V, Temp. = 25°C

3) Input signal: SELLVDS

4) Input signal : RxIN3+, RxIN3-, RxIN2+, RxIN2-, RxIN1+, RxIN1-, RxIN0+, RxIN0-CK IN+, CK IN-

5) V_{CM}: LVDS Common mode voltage (V_{CM}=1.25V)

6) Please power on LVDS transmitter at the same time as VDD, or LVDS transmitter should be powered on first.

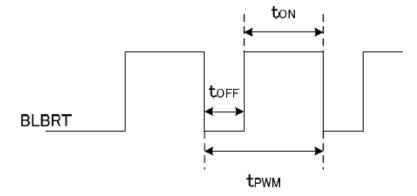

Spec No.	Part No.	Page
TQ3C-8EAF0-E1YAH38-01	TCG104SVLQAPNN-AN20	5

5-2. Constant current circuit for LED Backlight

Temp. = $-20 \sim 70$ °C

Item	Symbol	Condition	Min.	Тур.	Max.	Unit
Supply voltage 1)	$V_{\rm IN}$	-	10.8	12.0	13.2	V
Current consumption	${ m I}_{ m IN}$	2)	-	380	580	mA
Permissive input ripple voltage	$V_{\mathrm{RP_BL}}$	V _{IN} =12.0V	-	-	100	mVp-p
DI DDT Input signal voltage	$V_{\rm IL_BLBRT}$	"Low" level	0	-	0.8	V
BLBRT Input signal voltage	$V_{\rm IH_BLBRT}$	"High" level	2.3	-	V_{IN}	V
BLBRT Input pull-down resistance	R _{IN_BLBRT}	-	100	300	500	$k\Omega$
DI EN Input simual valtage	$V_{\rm IL_BLEN}$	"Low" level	0	-	0.8	V
BLEN Input signal voltage	V _{IH_BLEN}	"High" level	2.3	-	V_{IN}	V
BLEN Input pull-down resistance	RIN_BLEN	-	100	300	500	$k\Omega$
PWM Frequency 3)	${ m f}_{ m PWM}$	-	200	-	10k	Hz
		f _{PWM} =200Hz	1	-	100	%
PWM Duty ratio 3)	$\mathbf{D}_{\mathrm{PWM}}$	f _{PWM} =2kHz	10	-	100	%
		f _{PWM} =10kHz	50	-	100	%
Operating life time 4), 5)	Т	Temp.=25°C	-	100,000	-	h

1) V_{IN} -turn-on conditions



2) $V_{IN} = 12V$, Temp. = 25°C, $D_{PWM} = 100\%$

Spec No.	Part No.	Page
TQ3C-8EAF0-E1YAH38-01	TCG104SVLQAPNN-AN20	6

3) PWM Timing Diagram

ton, toff $\geq 50 \,\mu$ s.

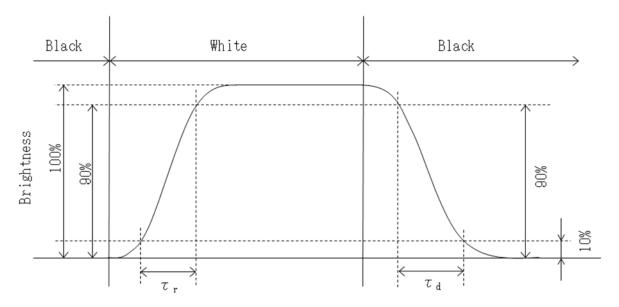
In case of lower frequency, the deterioration of the display quality, flicker etc., may occur.

- 4) When brightness decrease 50% of minimum brightness.

 The average life of a LED will decrease when the LCD is operating at higher temperatures.
- 5) Life time is estimated data.(Condition : IF=60mA, Ta=25 $^{\circ}$ C in chamber).

Spec No.	Part No.	Page
TQ3C-8EAF0-E1YAH38-01	TCG104SVLQAPNN-AN20	7

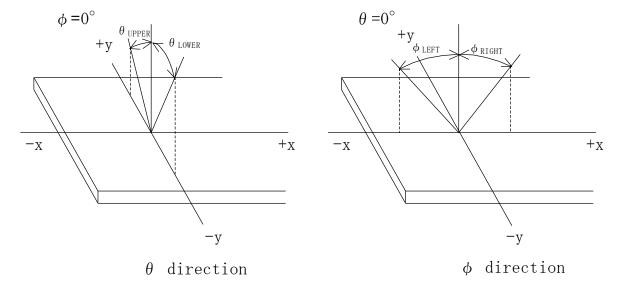
6. Optical characteristics

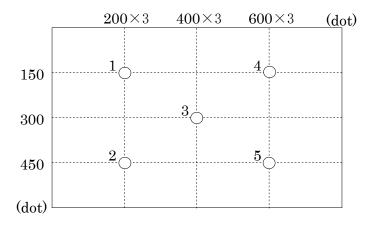

Measuring spot = ϕ 6.0mm, Temp. = 25°C

Item		Symbol	Condition	Min.	Тур.	Max.	Unit
D .:	Rise	Τr	$\theta = \phi = 0$ °	-	18	-	ms
Response time	Down	τd	$\theta = \phi = 0$ °	-	12	-	ms
		θ upper		-	85	-	1
17 1		θ lower	CD > 10	-	85	-	deg.
Viewing angle	range	φ left	CR≧10	-	85	-	1
		ф right		-	85	-	deg.
Contrast ratio		CR	$\theta = \phi = 0$ °	350	500	-	-
Brightness		L	IF=60mA/Line	280	400	-	cd/m²
		У		(0.550)	(0.600)	(0.650)	
	Green	X	$\theta = \phi = 0^{\circ}$	(0.300)	(0.350)	(0.400)	
	Green	У	$\theta = \phi = 0^{\circ}$	(0.285)	(0.335)	(0.385)	
Chromaticity	Blue		$\theta - \phi = 0$	(0.520)	(0.570)	(0.620)	
coordinates	Blue	У	0 - 1 -00	(0.100)	(0.150)	(0.200)	-
	White	X	$\theta = \phi = 0^{\circ}$	(0.070)	(0.120)	(0.170)	
	XX71 * .	x	0 - 1 -00	(0.265)	(0.315)	(0.365)	
	White	У	$\theta = \phi = 0$ °	(0.290)	(0.340)	(0.390)	

6-1. Definition of contrast ratio

CR(Contrast ratio) = Brightness with all pixels "White"
Brightness with all pixels "Black"


6-2. Definition of response time



Spec No.	Part No.	Page
TQ3C-8EAF0-E1YAH38-01	TCG104SVLQAPNN-AN20	8

6-3. Definition of viewing angle

6-4. Brightness measuring points

- 1) Rating is defined as the white brightness at center of display screen(3).
- 2) 5 minutes after LED is turned on. (Ambient Temp.= 25° C)

Spec No.	Part No.	Page
TQ3C-8EAF0-E1YAH38-01	TCG104SVLQAPNN-AN20	9

7. Interface signals

7-1. Interface signals

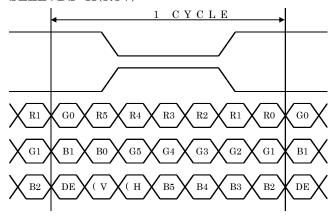
No.	Symbol	Description	Note
1	GND	GND	
2	SELLVDS	Mode select signal(LVDS Data mapping)	
3	GND	GND	
4	GND	GND	
5	RxIN3+	LVDS receiver signal CH3(+)	LVDS
6	RxIN3-	LVDS receiver signal CH3(-)	LVDS
7	GND	GND	
8	CK IN+	LVDS receiver signal CK(+)	LVDS
9	CK IN-	LVDS receiver signal CK(-)	LVDS
10	GND	GND	
11	RxIN2+	LVDS receiver signal CH2(+)	LVDS
12	RxIN2-	LVDS receiver signal CH2(-)	LVDS
13	GND	GND	
14	RxIN1+	LVDS receiver signal CH1(+)	LVDS
15	RxIN1-	LVDS receiver signal CH1(-)	LVDS
16	GND	GND	
17	RxIN0+	LVDS receiver signal CH0(+)	LVDS
18	RxIN0-	LVDS receiver signal CH0(-)	LVDS
19	GND	GND	
20	GND	GND	
21	$V_{ m DD}$	+3.3V power supply	
22	$V_{ m DD}$	+3.3V power supply	
23	GND	GND	
24	BLBRT	PWM signal(Brightness adjustment)	
25	BLEN	ON/OFF terminal voltage	
26	GND	GND	
27	V_{IN}	+12V power supply	
28	$V_{\rm IN}$	+12V power supply	
29	GND	GND	
30	GND	GND	

LCD connector : FI-X30SSLA-HF (JAE) Matching connector : FI-X30HL (JAE)

: FI-X30HL-T (JAE) : FI-X30C2L-NPB (JAE) : FI-X30C2L-T-NPB (JAE)

LVDS receiver : Embedded in ASIC

Matching LVDS transmitter : THC63LVDM83R(THine Electronics) or compatible


Spec No.	Part No.	Page
TQ3C-8EAF0-E1YAH38-01	TCG104SVLQAPNN-AN20	10

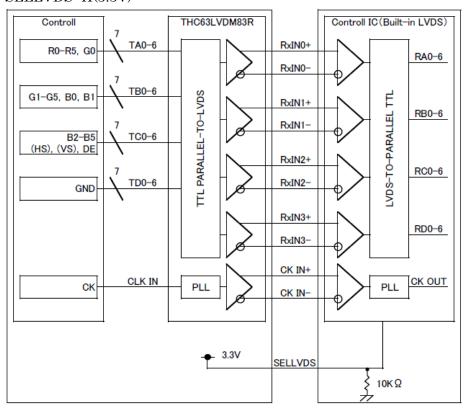
7-2. Data mapping(6bit RGB input)

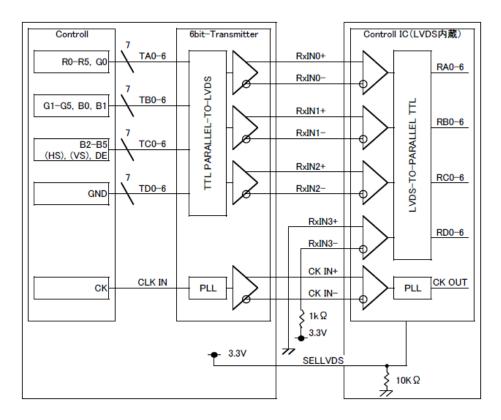
1) Location of SELLVDS (THC63LVDM83R(THine Electronics) or compatible)

Location of SELLVES		(111COOL V DIVICOIV(1	Time Dicentifics, of C
Trans	mitter	2Pin SE	ELLVDS
Pin No.	Data	= L(GND) or OPEN	= H(3.3V)
51	TA0	_	R0(LSB)
52	TA1	_	R1
54	TA2	_	R2
55	TA3	_	R3
56	TA4	_	R4
3	TA5	_	R5(MSB)
4	TA6	_	G0(LSB)
6	TB0	_	G1
7	TB1	_	G2
11	TB2	_	G3
12	TB3	_	G4
14	TB4	_	G5(MSB)
15	TB5	_	B0(LSB)
19	TB6	_	B1
20	TC0	_	B2
22	TC1	_	B3
23	TC2	_	B4
24	TC3	_	B5(MSB)
27	TC4	_	(HS)
28	TC5	_	(VS)
30	TC6	_	DE
50	TD0	_	GND
2	TD1	_	GND
8	TD2	_	GND
10	TD3	_	GND
16	TD4	_	GND
18	TD5	_	GND
25	TD6	_	GND

SELLVDS=H(3.3V)

DE: DATA ENABLE

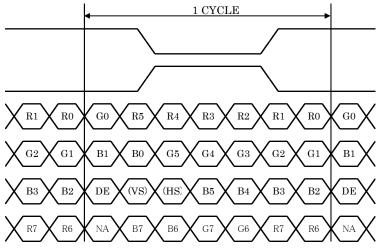

 $HS: H_{SYNC}$ $VS: V_{SYNC}$


Spec No.	Part No.	Page
TQ3C-8EAF0-E1YAH38-01	TCG104SVLQAPNN-AN20	11

2) Block Diagram

SELLVDS=H(3.3V)

When using "6-bit Transmitter", please connect the unused channel of the control IC receiver as described in the diagram below.

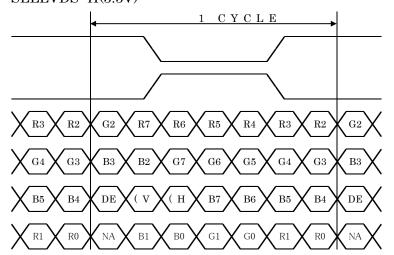

Spec No.	Part No.	Page
TQ3C-8EAF0-E1YAH38-01	TCG104SVLQAPNN-AN20	12

7-3. Data mapping(8bit RGB input)

1) Location of SELLVDS (THC63LVDM83R(THine Electronics) or compatible)

	mitter		ELLVDS
Pin No.	Data	= L(GND) or OPEN	= H(3.3V)
51	TA0	R0(LSB)	R2
52	TA1	R1	R3
54	TA2	R2	R4
55	TA3	R3	R5
56	TA4	R4	R6
3	TA5	R5	R7(MSB)
4	TA6	G0(LSB)	G2
6	TB0	G1	G3
7	TB1	G2	G4
11	TB2	G3	G5
12	TB3	G4	G6
14	TB4	G5	G7(MSB)
15	TB5	B0(LSB)	B2
19	TB6	B1	В3
20	TC0	B2	B4
22	TC1	В3	B5
23	TC2	B4	В6
24	TC3	B5	B7(MSB)
27	TC4	(HS)	(HS)
28	TC5	(VS)	(VS)
30	TC6	DE	DE
50	TD0	R6	R0(LSB)
2	TD1	R7(MSB)	R1
8	TD2	G6	G0(LSB)
10	TD3	G7(MSB)	G1
16	TD4	В6	B0(LSB)
18	TD5	B7(MSB)	B1
25	TD6	(NA)	(NA)

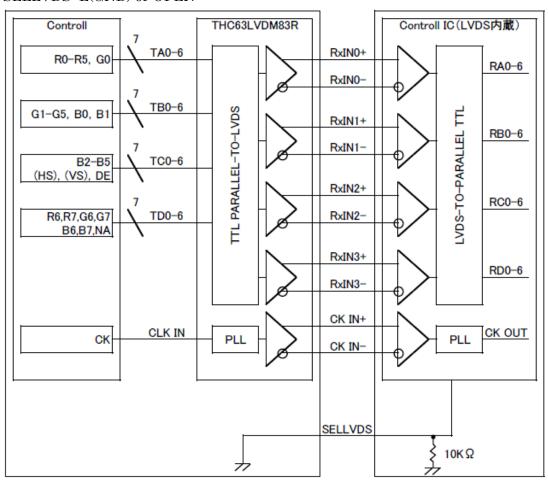
SELLVDS=L(GND) or OPEN


DE: DATA ENABLE

 $HS: H_{SYNC}$ $VS: V_{SYNC}$

Spec No.	Part No.	Page
TQ3C-8EAF0-E1YAH38-01	TCG104SVLQAPNN-AN20	13

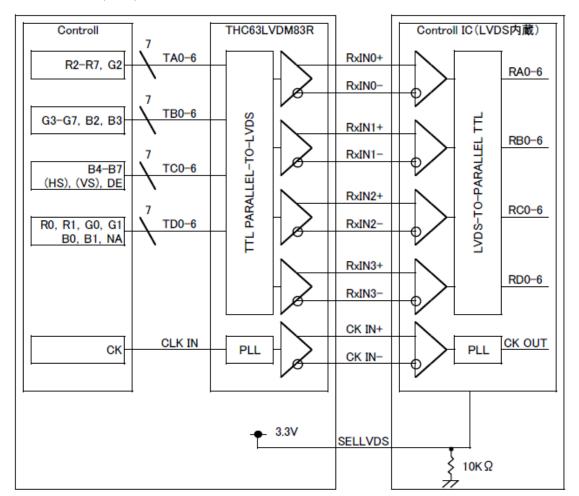
SELLVDS=H(3.3V)



DE: DATA ENABLE

 $\begin{array}{l} HS: H_{SYNC} \\ VS: V_{SYNC} \end{array}$

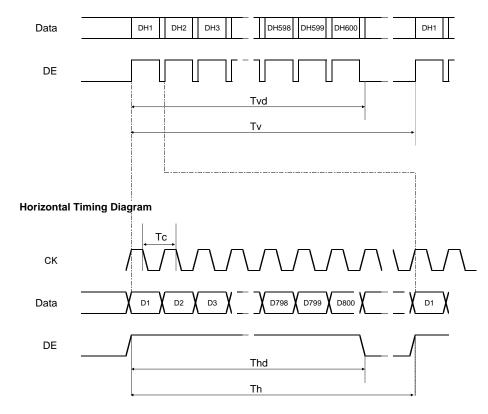
2) Block Diagram


SELLVDS=L(GND) or OPEN

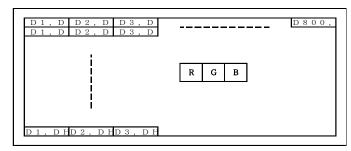
Spec No.	Part No.	Page
TQ3C-8EAF0-E1YAH38-01	TCG104SVLQAPNN-AN20	14

SELLVDS=H(3.3V)

Spec No.	Part No.	Page
TQ3C-8EAF0-E1YAH38-01	TCG104SVLQAPNN-AN20	15


8. Input timing characteristics

8-1. Timing characteristics


	Symbol	Min.	Typ.	Max.	Unit	Note	
Clock (CK) Frequency		1/Tc	30	40	48	MHz	
	Haninantal Daviad	Th -	860	1056	1395	Тс	
	Horizontal Period		24.0	26.4	-	μ s	1)
Enable signal (DE)	Horizontal display period	Thd		800		Тс	
(DL)	Vertical Period	Tv	610	628	1024	Th	
	Vertical display period	Tvd	600		Th		
Refresh rate		fv	50	60	70	Hz	2)

- 1) Please set a clock frequency, a vertical dormant period, and the horizontal dormant period so that the Horizontal Period should not reach less than Min. value.
- 2) If the refresh rate reach less than Min. value, the deterioration of the display quality, flicker etc., may occur.(fv=1/Tv)

Vertical Timing Diagram

8-2. Input Data Signals and Display position on the screen

Spec No.	Part No.	Page
TQ3C-8EAF0-E1YAH38-01	TCG104SVLQAPNN-AN20	16

9. Lot number identification

The lot number shall be indicated on the back of the backlight case of each LCD.

No1. - No5. above indicate

- 1. Year code
- 2. Month code
- 3. Date
- 4. Version Number
- 5. Country of origin (Japan or China)

Year	2012	2013	2014	2015	2016	2017
Code	2	3	4	5	6	7

Month	Jan.	Feb.	Mar.	Apr.	May	Jun.
Code	1	2	3	4	5	6

Month	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.
Code	7	8	9	X	Y	Z

10. Warranty

10-1. Incoming inspection

Please inspect the LCD within one month after your receipt.

10-2. Production warranty

Kyocera warrants its LCD's for a period of 12 months from the ship date. Kyocera shall, by mutual agreement, replace or re-work defective LCD's that are shown to be Kyocera's responsibility.

Spec No.	Part No.	Page
TQ3C-8EAF0-E1YAH38-01	TCG104SVLQAPNN-AN20	17

11. Precautions for use

11-1. Installation of the LCD

- 1) Please ground either of the mounting (screw) holes located at each corner of an LCD, in order to stabilize brightness and display quality.
- 2) A transparent protection plate shall be added to protect the LCD and its polarizer.
- 3) The LCD shall be installed so that there is no pressure on the LSI chips.
- 4) Since this product is wide viewing product, occurrence level of in-plane unevenness by the external stress is different compared to current normal viewing product. So there is a possibility that in-plane unevenness will be occurred by over twist, strain giving by attaching to LCD, and over pressure to touch panel. Please be careful of stress when designing the housing.
- 5) A transparent protection sheet is attached to the polarizer. Please remove the protection film slowly before use, paying attention to static electricity.

11-2. Static electricity

- 1) Since CMOS ICs are mounted directly onto the LCD glass, protection from static electricity is required.
- 2) Workers should use body grounding. Operator should wear ground straps.

11-3. LCD operation

- 1) The LCD shall be operated within the limits specified. Operation at values outside of these limits may shorten life, and/or harm display images.
- 2) Please select the best display pattern based on your evaluation because flicker, lines or nonuniformity or unevenness can be visible depending on display patterns.

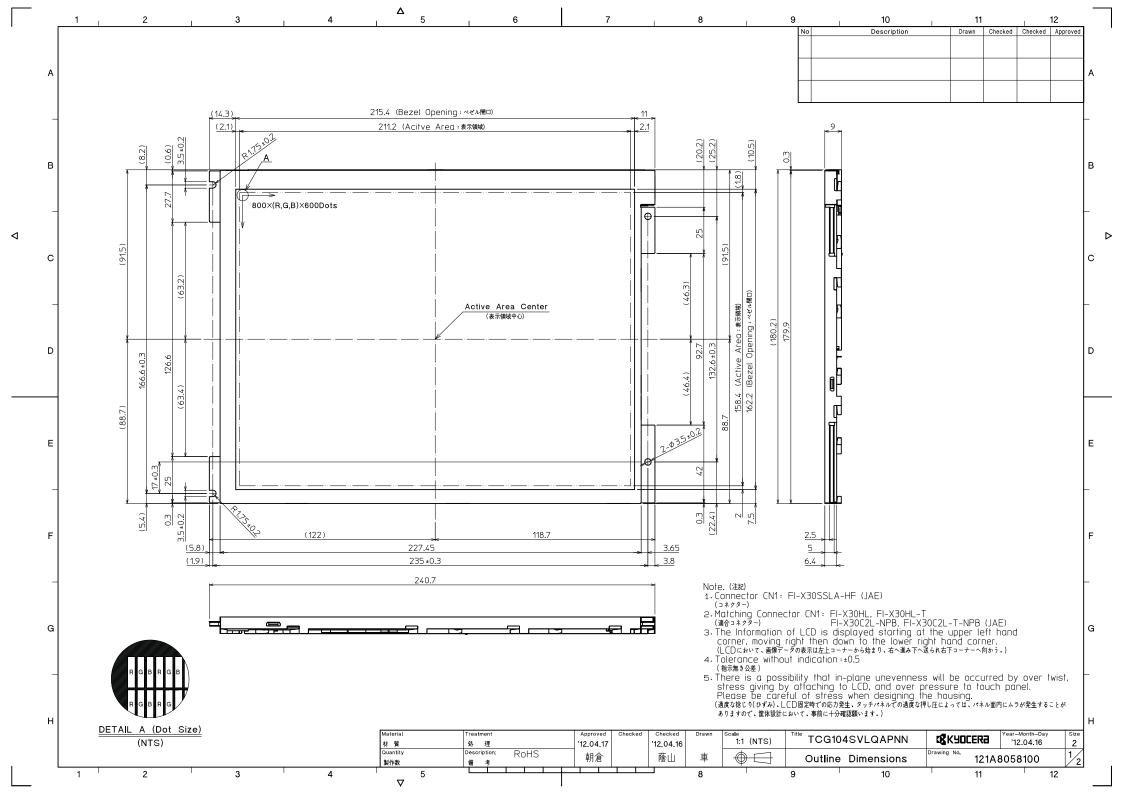
11-4. Storage

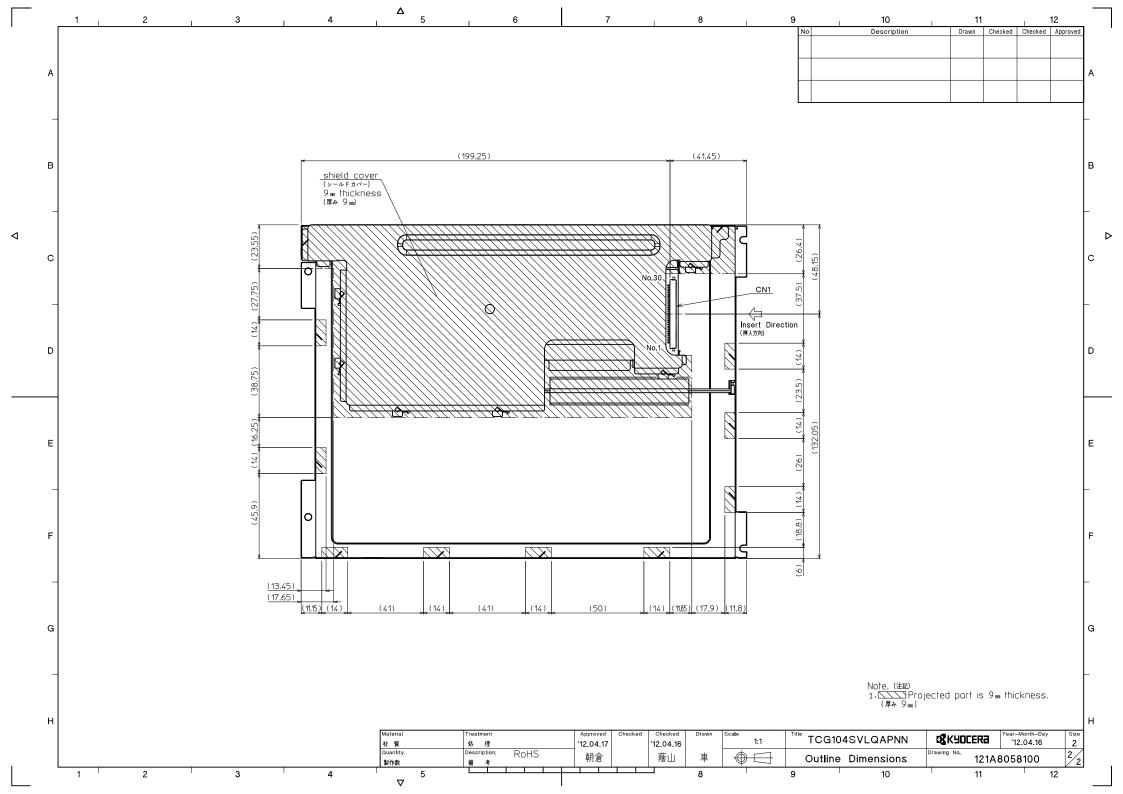
- The LCD shall be stored within the temperature and humidity limits specified.
 Store in a dark area, and protect the LCD from direct sunlight or fluorescent light.
- 2) Always store the LCD so that it is free from external pressure onto it.

11-5. Usage

- 1) <u>DO NOT</u> store in a high humidity environment for extended periods. Polarizer degradation bubbles, and/or peeling off of the polarizer may result.
- 2) The front polarizer is easily scratched or damaged. Prevent touching it with any hard material, and from being pushed or rubbed.
- 3) The LCD screen may be cleaned by wiping the screen surface with a soft cloth or cotton pad using a little Ethanol.
- 4) Water may cause damage or discoloration of the polarizer. Clean condensation or moisture from any source immediately.
- 5) Always keep the LCD free from condensation during testing. Condensation may permanently spot or stain the polarizer.
- 6) Do not disassemble LCD because it will result in damage.
- 7) This Kyocera LCD has been specifically designed for use in general electronic devices, but not for use in a special environment such as usage in an active gas. Hence, when the LCD is supposed to be used in a special environment, evaluate the LCD thoroughly beforehand and do not expose the LCD to chemicals such as an active gas.
- 8) Please do not use solid-base image pattern for long hours because a temporary afterimage may appear. We recommend using screen saver etc. in cases where a solid-base image pattern must be used.
- 9) Liquid crystal may leak when the LCD is broken. Be careful not to let the fluid go into your eyes and mouth. In the case the fluid touches your body; rinse it off right away with water and soap.

Spec No.	Part No.	Page
TQ3C-8EAF0-E1YAH38-01	TCG104SVLQAPNN-AN20	18


12. Reliability test data


Test item	Test condition Test time		Judgement		
High temp. atmosphere			Display function Display quality Current consumption	: No defect : No defect : No defect	
Low temp. atmosphere	-30°C	Display function Display quality Current consumption		: No defect : No defect : No defect	
High temp. humidity atmosphere	40°C 90% RH	240h	Display function Display quality Current consumption	: No defect : No defect : No defect	
Temp. cycle	-30°C 0.5h R.T. 0.5h 80°C 0.5h	10cycles	Display function Display quality Current consumption	: No defect : No defect : No defect	
High temp. operation	70°C	500h	Display function Display quality Current consumption	: No defect : No defect : No defect	

- 1) Each test item uses a test LCD only once. The tested LCD is not used in any other tests.
- 2) The LCD is tested in circumstances in which there is no condensation.
- 3) The reliability test is not an out-going inspection.
- 4) The result of the reliability test is for your reference purpose only.

 The reliability test is conducted only to examine the LCD's capability.

Spec No.	TQ3C-8EAF0-E2YAH38-01
Date	October 16, 2014

KYOCERA INSPECTION STANDARD

TYPE: TCG104SVLQAPNN-AN20

KYOCERA DISPLAY CORPORATION

Original	Designed by : Engineering dept.			Confirmed by : QA dept.	
Issue Date	Prepared	Checked	Approved	Checked	Approved
June 19, 2012	K. Janimuka	Y. Yamazaki	W. Yano	O. Sato	I. Hamars

Spec No.	Part No.	Page
TQ3C-8EAF0-E2YAH38-01	TCG104SVLQAPNN-AN20	-

Revision record

	Revision record						
Date				Engineering d		Confirmed by	: QA dept.
	Date	Prepa	ared	Checked Approved Checked Approv		Approved	
October 16, 2014		X. Ja	nimuka	y Yamazaki	W. Yano	O. Sato	I Hamans
Rev.No.	Date	Page			Descripti	ons	
01	Oct 16,2014	_	chang	e KYOCERA CO			N
	, .					Y CORPORATI	
		1	chang	e "Definition of	inspection ite	m" Bright dot d	efect.
		_	onang	0 201111101011 01	inspection res	ar Bright dot d	01000
		1	Ì				

Spec No.	Part No.	Page
TQ3C-8EAF0-E2YAH38-01	TCG104SVLQAPNN-AN20	1

Visuals specification

1) Note

1) Note			Note				
Conoral	1. Custom	on identified anomaliae					
General	1. Customer identified anomalies not defined within this inspection standard shall be reviewed by Kyocera, and an additional standard shall be determined by mutual consent.						
	2. This inspection standard about the image quality shall be applied to any defect within the						
		effective viewing area and shall not be applicable to outside of the area.					
	3. Inspecti	ion conditions					
	Lumina	ance	: 500 Lux min.				
	Inspect	ion distance	: 300 mm.				
	Temper	rature	$:25~\pm~5^{\circ}\!\mathrm{C}$				
	Direction	on	: Directly above				
Definition of	Dot defect	Bright dot defect	The dot is constantly "on" when power applied to the				
inspection			LCD, even when all "Black" data sent to the screen.				
item			Inspection tool: 5% Transparency neutral density filter.				
			Count dot: If the dot is visible through the filter.				
			Don't count dot: If the dot is not visible through the				
			filter.				
			RGBRGBRGB There is an electrode in the middle of the dot				
			R G E R G B R G B and one dot is shown in the left drawing.				
			R G B R G B R G B < dot drawing>				
		Black dot defect	The dot is constantly "off" when power applied to the				
			LCD, even when all "White" data sent to the screen.				
			Similar size compared to bright dot.				
		White dot	Pixel works electrically, however, circular/foreign				
		(Circular/foreign	particle makes dot appear to be "on" even when all				
		particle)	"Black" data is sent to the screen.				
		Adjacent dot	Adjacent dot defect is defined as two or more bright dot				
			defects or black dot defects.				
			R G B R G B R G B				
			det defect				
			R G B R G B U un delect				
	External	Bubble, Scratch,	Visible operating (all pixels "Black" or "White") and non				
	inspection	Foreign particle	operating.				
		(Polarizer, Cell, Backlight)					
		Appearance inspection	Does not satisfy the value at the spec.				
	Others	CFL wires	Damaged to the CFL wires, connector, pin, functional				
			failure or appearance failure.				
	Definition	Definition of cir	**				
	of size		<u> </u>				
		()	<u> </u>				
		← a	1 1				
		d = (a + b))/2				

Spec No.	Part No.	Page
TQ3C-8EAF0-E2YAH38-01	TCG104SVLQAPNN-AN20	2

2) Standard

2) Standar	rd							
Classif	ication	Inspect	tion item		Judgement	standar	d	
Defect	Dot	Bright dot	defect	Acceptable number : 4				
(in LCD	defect			Bright dot spacing : 5 mm		or more		
glass)		Black dot defect		Acceptable number : 5				
				Black dot spacing : 5 mm or more			or more	
		2 dot join	Bright dot defect	Acceptable number : 2		: 2		
			Black dot defect	Acceptable number : 3				
		2 00 0000	l.	Acceptable number		: 0		
		3 or more o						
	0.1	Total dot d		Acceptable number		: 5 Max	X	
	Others	White dot,	Dark dot		`	Ι .		
		(Circle)		Size (mm		Ac	ceptable number	
				$\begin{array}{c c} & d \leq \\ \hline 0.2 < d \leq \end{array}$			(Neglected)	
				$0.2 < d \le 0.4 $			5 3	
				$0.4 < d \equiv 0.5 < d$	0.5		0	
				0.5 \ u			Ū	
External	inspection	Polarizer (Scratch)					
(Defect on	1			Width (mm)	Width (mm) Length (mm)		Acceptable number	
Polarizer	or			W ≤ 0.1 -		(Neglected)		
between F	Polarizer			$0.1 < W \le 0.3$		$L \leq 5.0$ (Neglected)		
and LCD	glass)				5.0 < L		0	
				0.3 < W	_		0	
		Polarizer (Bubble)					
				Size (mm	1)	Ac	ceptable number	
				d ≦	0.2		(Neglected)	
				$0.2 < d \le 0.3$			5	
				0.3 < d ≦	0.5		3	
				0.5 < d			0	
		Foreign pa	ırticle					
		(Circular shape)		Size (mm)		Acceptable number		
				d ≦			(Neglected)	
				0.2 < d ≦			5	
					$4 < d \le 0.5$		3	
				0.5 < d	0.5 < d		0	
	Foreign particle							
		(Linear s	hape)	Width (mm) Length		h (mm) Acceptable number		
		Scratch		$W \leq 0.03 \qquad -$		(Neglected)		
				$L \leq 2.0$		(Neglected)		
				$0.03 < W \le 0.1$ $2.0 < L \le 4.0$		3		
					4.0 < L		0	
				0.1 < W			(According to	
							circular shape)	

ALL TECHNOLOGIES. ALL COMPETENCIES. ONE SPECIALIST.

DATA MODUL AG Landsberger Straße 322 DE-80687 Munich Phone: +49-89-56017-0 DATA MODUL WEIKERSHEIM GMBH Lindenstraße 8 DE-97990 Weikersheim Phone: +49-7934-101-0

More information and worldwide locations can be found at