

SPECIFICATION

TX14D28VM5BAA

5.7" TFT - VGA - LVDS

Version: TX14D28VM5BAA-1

Date: 18.09.2013

Note: This specification is subject to change without prior notice

Kaohsiung Opto-Electronics Inc.

FOR MESSRS:	DATE : Sep.18 th ,2	:013

CUSTOMER'S ACCEPTANCE SPECIFICATIONS

TX14D28VM5BAA

Contents

No.	ITEM	SHEET No.	PAGE
1	COVER	7B64PS 2701-TX14D28VM5BAA-1	1-1/1
2	RECORD OF REVISION	7B64PS 2702-TX14D28VM5BAA-1	2-1/1
3	GENERAL DATA	7B64PS 2703-TX14D28VM5BAA-1	3-1/1
4	ABSOLUTE MAXIMUM RATINGS	7B64PS 2704-TX14D28VM5BAA-1	4-1/1
5	ELECTRICAL CHARACTERISTICS	7B64PS 2705-TX14D28VM5BAA-1	5-1/2~2/2
6	OPTICAL CHARACTERISTICS	7B64PS 2706-TX14D28VM5BAA-1	6-1/2~2/2
7	BLOCK DIAGRAME	7B64PS 2707-TX14D28VM5BAA-1	7-1/1
8	RELIABILITY TESTS	7B64PS 2708-TX14D28VM5BAA-1	8-1/1
9	LCD INTERFACE	7B64PS 2709-TX14D28VM5BAA-1	9-1/7~7/7
10	OUTLINE DIMENSIONS	7B64PS 2710-TX14D28VM5BAA-1	10-1/2~2/2
11	APPEARANCE STANDARD	7B64PS 2711-TX14D28VM5BAA-1	11-1/3~3/3
12	PRECAUTIONS	7B64PS 2712-TX14D28VM5BAA-1	12-1/2~2/2
13	DESIGNATION OF LOT MARK	7B64PS 2713-TX14D28VM5BAA-1	13-1/1

ACCEPTED BY: ROPOSED BY: Lend

KAOHSIUNG OPTO-ELECTRONICS INC.	SHEET NO.	7B64PS 2701-TX14D28VM5BAA-1	PAGE	1-1/1
---------------------------------	--------------	-----------------------------	------	-------

DATE	ORD OF REVISION SHEET No.		SUMMARY		
57.11	5		001/11/2 11 (1		
	1				
		OUEET			
KAOHSIUNG	OPTO-ELECTRONICS INC.	SHEET NO.	7B64PS 2702-TX14D28VM5BAA-1	PAGE	2-1/1

3. GENERAL DATA

3.1 DISPLAY FEATURES

This module is a 5.7" VGA of 4:3 format amorphous silicon TFT. The pixel format is vertical stripe and sub pixels are arranged as R (red), G (green), B (blue) sequentially. This display is RoHS compliant, COG (chip on glass) technology and LED backlight are applied on this display.

Part Name	TX14D28VM5BAA
Module Dimensions	131.0(W) mm x 102.2(H) mm x 7.6(D) mm typ.
LCD Active Area	115.2(W) mm x 86.4(H) mm
Dot Pitch	0.06 x 3(RGB)(W) mm x 0.18(H) mm
Resolution	640 x 3(RGB)(W) x 480(H) dots
Color Pixel Arrangement	R, G, B Vertical stripe
LCD Type	Transmissive Color TFT; Normally White
Display Type	Active Matrix
Number of Colors	262k Colors
Backlight	27 LEDs (3 serial x 9 parallel)
Weight	108g typ.
Interface	LVDS; 20 pins
Power Supply Voltage	3.3V for LCD; 12V for Backlight
Power Consumption	0.46W for LCD; 2.16W for backlight
Viewing Direction	Super Wide Version

4. ABSOLUTE MAXIMUM RATINGS

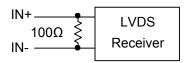
Item	Symbol	Min.	Max.	Unit	Remarks
Supply Voltage	V_{DD}	-0.3	7.0	V	-
Input Voltage of Logic	Vı	-0.2	V _{DD} +0.3	V	Note 1
Operating Temperature	Тор	-30	80	°C	Note 2
Storage Temperature	Tst	-30	80	°C	Note 2

- Note 1: The rating is defined for the signal voltages of the interface such as CLK and pixel data pairs.
- Note 2: The maximum rating is defined as above based on the panel surface temperature, which might be different from ambient temperature after assembling the panel into the application. Moreover, some temperature-related phenomenon as below needed to be noticed:
 - Background color, contrast and response time would be different in temperatures other than $25\,^{\circ}\mathrm{C}\,.$
 - Operating under high temperature will shorten LED lifetime.

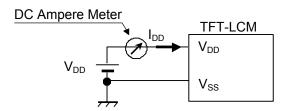
SHEET	
NO.	

5. ELECTRICAL CHARACTERISTICS

5.1 LCD CHARACTERISTICS


 $T_a = 25 \,^{\circ}C$, Vss = 0V

Item	Symbol	Condition	Min.	Тур.	Max.	Unit	Remarks
Power Supply Voltage	V_{DD}	-	3.0	3.3	3.6	V	-
Differential Input		V _{IH}	-	-	+100		
Voltage for LVDS Receiver Threshold	V_{I}	V _{IL}	-100	-	1	mV	Note 1
Power Supply Current	I _{DD}	V _{DD} -V _{SS} =3.3V	-	140	170	mA	Note 2,3
Vsync Frequency	f_{v}	-	-	60	67	Hz	
Hsync Frequency	$f_{\scriptscriptstyle H}$	-	30.96	31.5	32.1	KHz	Note 4
DCLK Frequency	f_{CLK}	-	24.4	25.2	27.3	MHz	


Note 1: VCM=+1.2V

VCM is common mode voltage of LVDS transmitter/receiver.

The input terminal of LVDS transmitter is terminated with 100Ω .

Note 2: An all black check pattern is used when measuring I_{DD} , f_{v} is set to 60Hz.

Note 3: 0.4A fuse is applied in the module for I_{DD}. For display activation and protection purpose, power supply is recommended larger than 1.0A to start the display and break fuse once any short circuit occurred.

Note 4: For LVDS transmitter input.

5.2 BACKLIGHT CHARACTERISTICS

 $T_a=25~^{\circ}C$

Item	Symbol	Condition	Min.	Тур.	Max.	Unit	Remarks
LED Input Voltage	V_{LED}	-	11.5	12	12.5	V	Note1
LED Forward Current	I _{LED}	-	-	180	-	mA	-
LED lifetime	-	180 mA	-	40K	-	hrs	Note 2

Note 1: Fig. 5.1 shows the LED backlight circuit. The circuit has 27 LEDs in total and R is 130 Ω .

Note 2: The estimated lifetime is specified as the time to reduce 50% brightness by applying 180 mA at $25\,^{\circ}\mathrm{C}$.

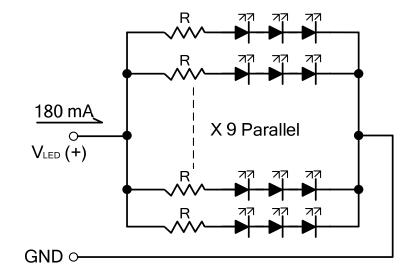


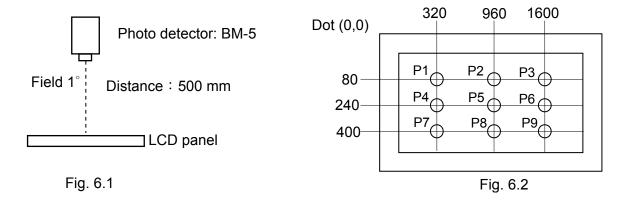
Fig. 5.1

6. OPTICAL CHARACTERISTICS

The optical characteristics are measured based on the conditions as below:

- Supplying the signals and voltages defined in the section of electrical characteristics.
- The backlight unit needs to be turned on for 30 minutes.
- The ambient temperature is 25 °C.
- In the dark room around 500~1000 lx, the equipment has been set for the measurements as shown in Fig 6.1.

 $T_a = 25 \, ^{\circ}C, f_v = 60 \, \text{Hz}, \text{Vpd} = 3.3 \text{V}$

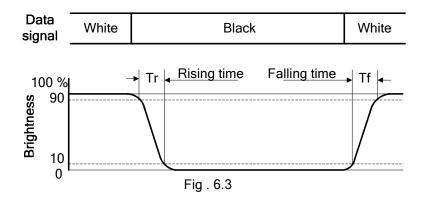

Item		Symbol	Condition	Min.	Тур.	Max.	Unit	Remarks
Brightness o	f White	-		640	800	-	cd/m ²	Note 1
Brightness Ur	niformity	-	$\phi = 0^{\circ}, \theta = 0^{\circ},$	70	-	-	%	Note 2
Contrast F	Ratio	CR	I _{LED} = 180 mA	200	400	-	-	Note 3
Response (Rising + Fa		$T_r + T_f$	$\phi = 0^{\circ}, \theta = 0^{\circ}$	-	50	-	ms	Note 4
NTSC R	atio	-	$\phi = 0^{\circ}, \theta = 0^{\circ}$	-	50	-	%	-
		θ x	$\phi = 0^{\circ}, CR \ge 10$	-	80	-		Note 5
) (i a unim au A	Viewing Angle	θ x'	$\phi = 180^{\circ}, CR \ge 10$	-	80	-	Degree	
viewing A		θ y	$\phi = 90^{\circ}$, CR ≥ 10	-	80	-		
			$\phi = 270^{\circ}, CR \ge 10$	-	80	-		
	Dad	X		0.56	0.61	0.66		
	Red	Υ		0.31	0.36	0.41		
	Croon	Х		0.32	0.37	0.42		
Color	Green	Υ		0.52	0.57	0.62	-	
Chromaticity	Pluo	X	$\phi = 0^{\circ}, \theta = 0^{\circ}$	0.10	0.15	0.20		Note 6
	Diue	Blue		0.06	0.11	0.16		
	White	Х		0.27	0.32	0.37		
	vviille	Υ		0.29	0.34	0.39		

Note 1: The brightness is measured from center point of the panel, P5 in Fig. 6.2, for the typical value.

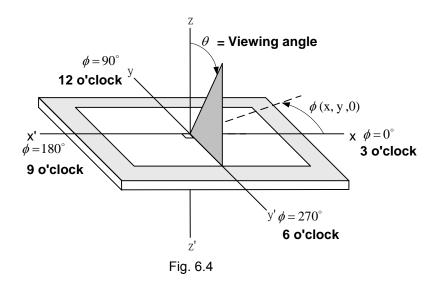
Note 2: The brightness uniformity is calculated by the equation as below:

Brightness uniformity =
$$\frac{\text{Min. Brightness}}{\text{Max. Brightness}}$$
 X100%

, which is based on the brightness values of the 9 points measured by BM-5 as shown in Fig. 6.2.

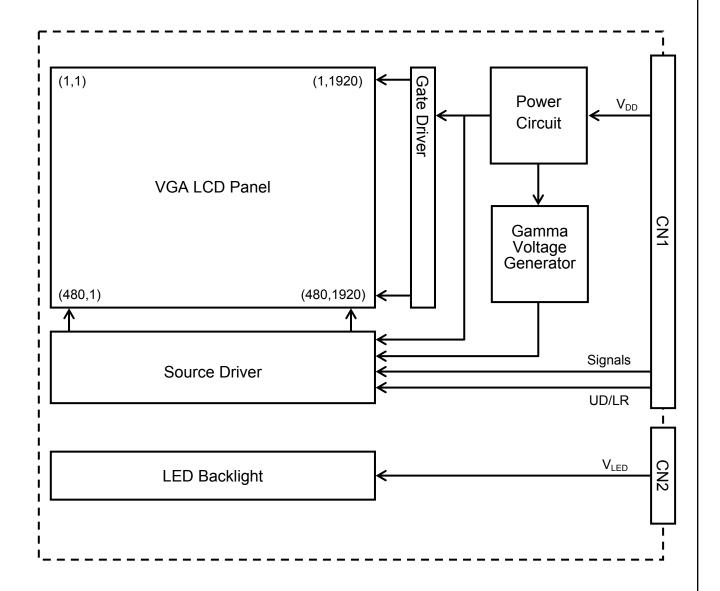


KAOHSIUNG OPTO-ELECTRONICS INC. SHEET NO. 7B64PS 2706-TX14D28VM5BAA-1 PAGE 6-1/2


Note 3: The Contrast ratio is measured from the center point of the panel, P5, and defined as the following equation:

CR = Brightness of White
Brightness of Black

Note 4: The definition of response time is shown in Fig. 6.3. The rising time is the period from 90% brightness to 10% brightness when the data is from white to black. Oppositely, falling time is the period from 10% brightness rising to 90% brightness.



Note 5: The definition of viewing angle is shown in Fig. 6.4. Angle ϕ is used to represent viewing directions, for instance, $\phi = 270^{\circ}$ means 6 o'clock, and $\phi = 0^{\circ}$ means 3 o'clock. Moreover, angle θ is used to represent viewing angles from axis Z toward plane XY.

Note 6: The color chromaticity is measured from the center point of the panel, P5, as shown in Fig. 6.2.

7. BLOCK DIAGRAM

Note 1: Signals are CLK and pixel data pairs.

8. RELIABILITY TESTS

Test Item	Condition			
High Temperature	1) Operating 2) 80 °C	240 hrs		
Low Temperature	1) Operating 2) -30 °C	240 hrs		
High Temperature	1) Storage 2) 80 °C	240 hrs		
Low Temperature	1) Storage 2) -30 °C	240 hrs		
Heat Cycle	1) Operating 2) -20°C ~70°C 3) 3hrs~1hr~3hrs	240 hrs		
Thermal Shock	 Non-Operating -35 °C ↔ 85 °C 0.5 hr ↔ 0.5 hr 	240 hrs		
High Temperature & Humidity	1) Operating 2) 40 °C & 85%RH 3) Without condensation (Note 3)	240 hrs		
Vibration	1) Non-Operating 2) 20~200 Hz 3) 2G 4) X, Y, and Z directions	1 hr for each direction		
Mechanical Shock	1) Non-Operating 2) 10 ms 3) 50G 4) $\pm X, \pm Y$ and $\pm Z$ directions	Once for each direction		
ESD	 Operating Tip: 150 pF, 330 Ω Air discharge for glass: ±8KV Contact discharge for metal frame: ±8KV 	1) Glass: 9 points 2) Metal frame: 8 points (Note 4)		

- Note 1: There is no display functionality failure occurred after the reliability tests.
- Note 2: The display is not guaranteed for use in corrosive gas environments.
- Note 3: Under the condition of high temperature & humidity, if the temperature is higher than 40 °C, the humidity needs to be reduced as Fig. 8.1 shown.
- Note 4: All pins of LCD interface (CN1) have been tested by ± 100 V contact discharge of ESD under non-operating condition.

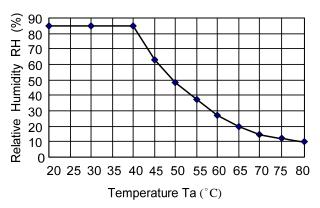


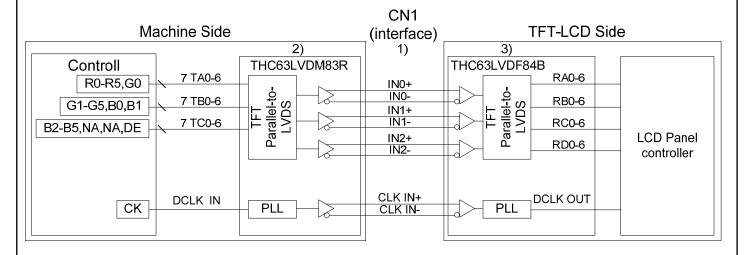
Fig. 8.1

9. LCD INTERFACE

9.1 INTERFACE PIN CONNECTIONS

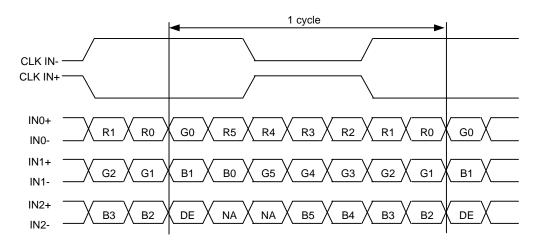
The display interface connector (CN1) is FI-SEB20P-HF13E made by JAE and pin assignment is as below:

Pin No.	Signal	Signal	Pin No.	Signal	Signal		
1	V_{DD}	Dower Cupply for Logic	11	IN2-	B2~B5, DE		
2	V_{DD}	Power Supply for Logic	12	IN2+	D2~D0, DE		
3	UD	Vertical Display mode Control (Note 2)	13	V _{SS}	GND		
4	LR	Horizontal Display mode Control	14	CLK			
4	LIX	(Note 2)	14	IN-	Pixel Clock		
5	INO-		15	CLK	FIXEL CIOCK		
3	1140	R0~R5, G0	13	IN+			
6	IN0+		16	V_{SS}	GND		
7	V_{SS}	GND	17	NC	No Connection		
8	IN1-	G1~G5, B0~B1	18	NC	No Connection		
9	IN1+	G1~G0, D0~D1	19	NC	No Connection		
10	V_{SS}	GND	20	NC	No Connection		


Note 1: IN n- and IN n+ (n=0, 1, 2), CLK IN- and CLK IN+ should be wired by twist-pairs or side-by-side FPC patterns, respectively.

Note 2: Please refer to <u>9.8 SCAN DIRECTION</u> for the setting methods of UD, LR function.

The backlight interface connector (CN2) is BHR-03VS-1 made by JST, and pin assignment is as below:


Pin No.	Signal	Level	Function
1	V_{LED} +	-	Power Supply for LED
2	NC	-	No Connection
3	V _{LED} -	-	GND

9.2 LVDS INTERFACE

- Note 1: LVDS cable impedance should be 100 ohms per signal line when each 2-lines (+, -) is used in differential mode.
- Note 2: The recommended transmitter, THC63LVDM83R, is made by Thine or equivalent, which is not contained in the module.
- Note 3: The receiver built-in the module is THC63LVDF84B made by Thine.

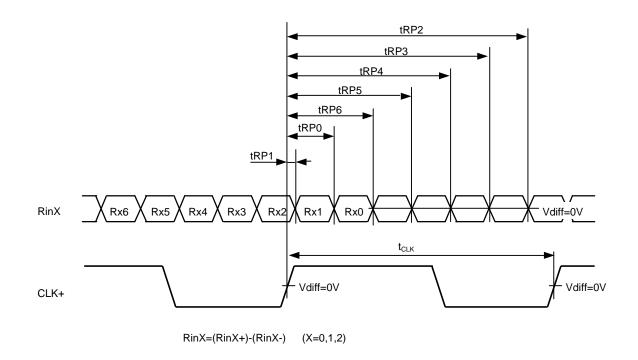
9.3 LVDS DATA FORMAT

DE: Display Enable NA: Not Available

9.4 TIMING CHART th = 800 CLK (1H) DE 144 145 800 1 CLK 25.2M Hz (typ.) 16CLK (typ.) 144 CLK (typ.) thd = 640 CLK (fixed) Invalid data Invalid data Display data R [0:5] G [0:5] B [0:5] В Fig. 9.1 Horizontal Timing tv = 525 H (60 Hz)DE tvd = 480 H (fixed)35H (typ.) 10H (typ.) Invalid lines Display lines Invalid lines **RGB** Fig. 9.2 Vertical Timing Tcph Tcwh 70% CLK 30% 30% Tdsu Tdhd Tcwl 70% 1st RGB 2nd RGB 640 RGB Data 30% Tesu Tehd: 70% 80% DE Fig. 9.3 Setup & Hold Time SHEET NO. **PAGE** 9-3/7 KAOHSIUNG OPTO-ELECTRONICS INC. 7B64PS 2709- TX14D28VM5BAA-1

9.5 TIMING TABLE

The column of timing sets including minimum, typical, and maximum as below are based on the best optical performance, frame frequency (Vsync) = 60Hz to define.


A. DE MODE

	Item	Symbol	Min.	Тур.	Max.	Unit
	CLK Frequency	fclk	24.4	25.2	27.3	MHz
Horizontal	Display Data	thd	640	640	640	OL IX
	Cycle Time	th	788	800	850	CLK
Vertical	Display Data	tvd	480	480	480	
	Cycle Time	tv	516	525	535	Н

B. CLOCK AND DATA INPUT TIMING

	Item	Symbol	Min.	Тур.	Max.	Unit
OL K	Duty	Tcwh	40	50	60	%
CLK	Cycle Time	Tcph	-	39.68	1	
Data	Setup Time	Tdsu	10	-	-	
Data	Hold Time	Tdhd	10	1	1	ns
DE	Setup Time	Tesu	10	1	ı	
DE	Hold Time	Tehd	10	-	-	

9.6 LVDS RECEIVER TIMING

	Item		Min.	Тур.	Max.	Unit
CLK	Frequency	1/t _{CLK}	24.4	25.2	27.3	MHz
RinX	0 data position	tRP0	1/7*t _{CLK} -0.49	1/7*t _{CLK}	1/7*t _{CLK} +0.49	
(X=0,1,2)	1st data position	tRP1	-0.49	0	+0.49	
	2nd data position	tRP2	6/7*t _{CLK} -0.49	6/7*t _{CLK}	6/7*t _{CLK} +0.49	
	3rd data position	tRP3	5/7*t _{CLK} -0.49	5/7*t _{CLK}	5/7*t _{CLK} +0.49	ns
	4th data position	tRP4	4/7*t _{CLK} -0.49	4/7*t _{CLK}	4/7*t _{CLK} +0.49	
	5th data position	tRP5	3/7*t _{CLK} -0.49	3/7*t _{CLK}	3/7*t _{CLK} +0.49	
	6th data position	tRP6	2/7*t _{CLK} -0.49	2/7*t _{CLK}	2/7*t _{CLK} +0.49	

9.7 POWER SEQUENCE

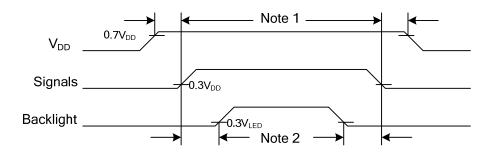
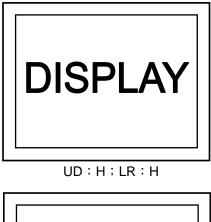
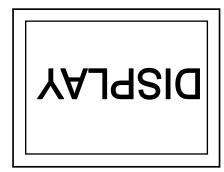
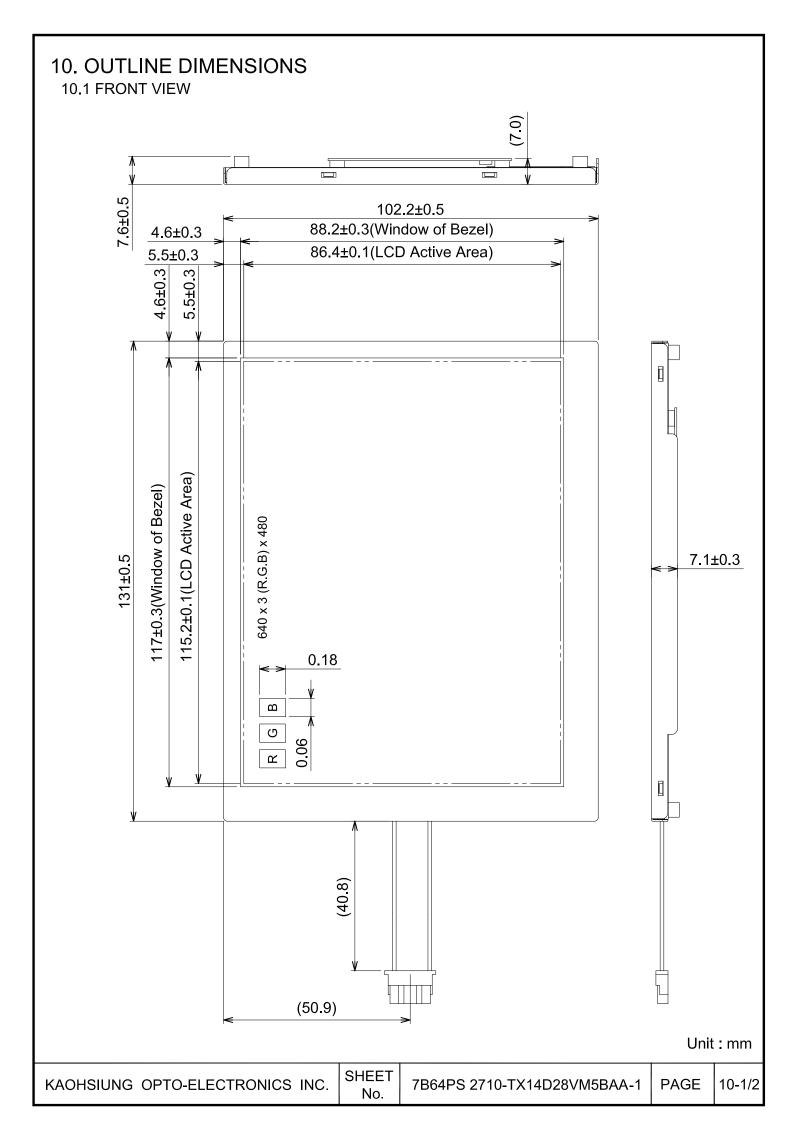



Fig. 9.4 Power Sequence Timing

- Note 1: In order to avoid any damages, V_{DD} has to be applied before all other signals. The opposite is true for power off where V_{DD} has to be remained on until all other signals have been switch off. The recommended time period is 1 second. Hot plugging might cause display damage due to incorrect power sequence, please pay attention on interface connecting before power on.
- Note 2: In order to avoid showing uncompleted patterns in transient state. It is recommended that switching the backlight on is delayed for 1 second after the signals have been applied. The opposite is true for power off where the backlight has to be switched off 1 second before the signals are removed.


9.8 SCAN DIRECTION

Scan direction is available to be switched as below by setting CN1's UD & LR pin.



UD:L;LR:L

9.9 DATA INPUT for DISPLAY COLOR

	COLOR & Gray Scale								[Data	Signa	al							
	Gray Scale	R5	R4	R3	R2	R1	R0	G5	G4	G3	G2	G1	G0	B5	B4	В3	B2	B1	В0
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red (63)	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
	Green (63)	0	0	0	0	0	0	1	1	1	1	1	1	0	0	0	0	0	0
Basic	Blue (63)	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1
Color	Cyan	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1
	Magenta	1	1	1	1	1	1	0	0	0	0	0	0	1	1	1	1	1	1
	Yellow	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0
	White	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red (1)	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0
	Red (2)	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0
Red	•	:	• •	• •	• •	• •	:		• •	• •	•		• •	• •		:		:	:
	•	:	:	:	:		:	:	:	:		:		:	:	:		:	:
	Red (62)	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red (63)	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green (1)	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0
	Green (2)	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0
Green	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
	Green (62)	0	0	0	0	0	0	1	1	1	1	1	0	0	0	0	0	0	0
	Green (63)	0	0	0	0	0	0	1	1	1	1	1	1	0	0	0	0	0	0
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Blue (1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
	Blue (2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
Blue	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
	•	:	• •	• •	• •	• •	:	:	• •	• •	:	:	:	• •	:	:	:	:	:
	Blue (62)	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	0
	Blue (63)	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1

10.2 REAR VIEW 3.1±0.5 124.8±0.5

4-M2

(28.5)

(

(P)

(50)

(1)

(1)

(66)

Note 1) CN1 : FI-SEB20P-HF13E (JAE) CN2 : BHR-03VS-1(JST)

 92.4 ± 0.5

(53.5)

(22.55)

⊚

Pin1

CN1

Unit: mm

CN2

0

KAOHSIUNG OPTO-ELECTRONICS INC. SHEET No. 7B64PS 2710-TX14D28VM5BAA-1 PAGE 10-2/2

11. APPEARANCE STANDARD

The appearance inspection is performed in a dark room around 500~1000 lx based on the conditions as below:

- The distance between inspector's eyes and display is 30 cm.
- The viewing zone is defined with angle θ shown in Fig. 11. The inspection should be performed within 45° when display is shut down. The inspection should be performed within 5° when display is power on.

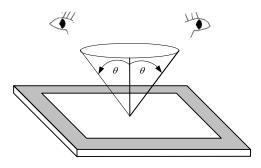
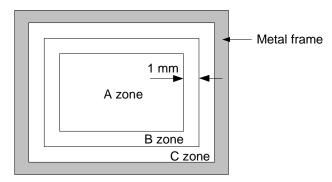


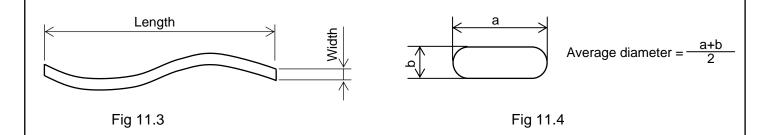
Fig. 11.1

11.1 THE DEFINITION OF LCD ZONE

LCD panel is divided into 3 areas as shown in Fig.11.2 for appearance specification in next section. A zone is the LCD active area (dot area); B zone is the area, which extended 1 mm out from LCD active area; C zone is the area between B zone and metal frame.

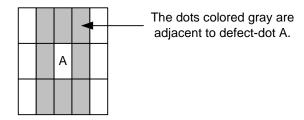
In terms of housing design, B zone is the recommended window area customers' housing should be located in.




Fig. 11.2

11.2 LCD APPEARANCE SPECIFICATION

The specification as below is defined as the amount of unexpected phenomenon or material in different zones of LCD panel. The definitions of length, width and average diameter using in the table are shown in Fig. 11.3 and Fig. 11.4.


	Applied zone						
Length (mm)	Wi	dth (mm)	Maximum number		Minimum space		
Ignored	W≦0.02		Ignored	t	-	4.5	
L≦40	0.02 <	<w≦0.04< td=""><td>10</td><td></td><td>-</td><td>A,B</td></w≦0.04<>	10		-	A,B	
L≦20		W≦0.04	10		-		
		Serious one	is not allowed			Α	
		Serious one	is not allowed			Α	
Average diar	neter	(mm)	Max	kimum n	umber		
D	≦0.2			Ignore	d		
0.2 <d< td=""><td>≦0.3</td><td></td><td></td><td>12</td><td></td><td>Α</td></d<>	≦0.3			12		Α	
				3			
				None	1		
		Filamentous	(Line shape)				
Length (mm)		i	` '		imum number		
		` '				A,B	
						,–	
					1		
Average diameter ((mm)	·	• /	Min	imum Space		
· ,		Ignored		-			
		10		10mm		A D	
		5		30mm		A,B	
		None		-			
			=10				
		· ·					
					4		
		2 adja	cent dot		1		
Bright dot-defed	ct	3 adjacent	dot or above	Ν	lot allowed		
		-			5	•	
					5	A	
5					2		
Dark dot-defec	τ	•		N	lot allowed		
		In total		7			
In total 12				12			
	$\begin{array}{c} \text{Ignored} \\ \text{L} \leqq 40 \\ \text{L} \leqq 20 \\ \\ \end{array}$ $\begin{array}{c} \text{Average diar} \\ \text{D} \\ \text{0.2} < \text{D} \\ \text{0.3} < \text{D} \\ \text{0.5} < \text{D} \\ \\ \end{array}$ $\begin{array}{c} \text{0.5} < \text{D} \\ \\ \text{Length (mm)} \\ \text{L} \leqq 2.0 \\ \text{L} \leqq 3.0 \\ \text{L} \leqq 2.5 \\ \\ \end{array}$ $\begin{array}{c} \text{Average diameter (a)} \\ \text{D} < 0.2 \\ \text{0.2} \leqq \text{D} < 0.3 \\ \text{0.3} \leqq \text{D} < 0.4 \\ \text{0.4} \leqq \text{D} \\ \text{In total} \\ \\ \end{array}$ Bright dot-defeed	$\begin{array}{c c} & \text{Ignored} \\ & \text{L} \leq 40 & 0.02 < \\ & \text{L} \leq 20 \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ $	$ \begin{array}{ c c c } Length \ (mm) & Width \ (mm) \\ Ignored & W \leq 0.02 \\ \hline L \leq 40 & 0.02 < W \leq 0.04 \\ \hline L \leq 20 & W \leq 0.04 \\ \hline Serious \ one \\ \hline Serious \ one \\ \hline Serious \ one \\ \hline Average \ diameter \ (mm) \\ \hline D \leq 0.2 \\ \hline 0.2 < D \leq 0.3 \\ \hline 0.3 < D \leq 0.5 \\ \hline 0.5 < D \\ \hline \hline Filamentous \\ \hline Length \ (mm) & Widt \\ \hline L \leq 2.0 & \\ \hline L \leq 3.0 & 0.03 < \\ \hline L \leq 2.5 & 0.05 < \\ \hline Round \ (Maximu \ D < 0.2 & Igr \\ \hline 0.2 \leq D < 0.3 & \\ \hline 0.3 \leq D < 0.4 & \\ \hline 0.4 \leq D & N \\ \hline In \ total & \\ \hline Bright \ dot-defect & T \\ \hline 1 & 2 \ adja \\ \hline 3 \ adjacent \\ \hline In \\ \hline Dark \ dot-defect & In \\ \hline \end{array} $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Length (mm) Width (mm) Maximum number Ignored W≤0.02 Ignored L≤40 0.02 < W≤0.04	Length (mm) Width (mm) Maximum number Minimum space Ignored W≤0.02 Ignored - L≤40 0.02 < W≤0.04	

KAOHSIUNG OPTO-ELECTRONICS INC.	SHEET NO.	7B64PS 2711- TX14D28VM5BAA-1	PAGE	11-2/3	
---------------------------------	--------------	------------------------------	------	--------	--

Note 1: The definitions of dot defect are as below:

- The defect area of the dot must be bigger than half of a dot.
- For bright dot-defect, showing black pattern, the dot's brightness must be over 30% brighter than others.
- For dark dot-defect, showing white pattern, the dot's brightness must be under 70% darker than others.
- The definition of 1-dot-defect is the defect-dot, which is isolated and no adjacent defect-dot.
- The definition of adjacent dot is shown as Fig. 11.5.
- The Density of dot defect is defined in the area within diameter ϕ =20mm.

12. PRECAUTIONS

12.1 PRECAUTIONS of ESD

- 1) Before handling the display, please ensure your body has been connected to ground to avoid any damages by ESD. Also, do not touch display's interface directly when assembling.
- 1) Please remove the protection film very slowly before turning on the display to avoid generating ESD.

12.2 PRECAUTIONS of HANDLING

- 1) In order to keep the appearance of display in good condition; please do not rub any surfaces of the displays by sharp tools harder than 3H, especially touch panel, metal frame and polarizer.
- 2) Please do not pile the displays in order to avoid any scars leaving on the display. In order to avoid any injuries, please pay more attention for the edges of glasses and metal frame, and wear finger cots to protect yourself and the display before working on it.
- 2) Touching the display area or the terminal pins with bare hand is prohibited. This is because it will stain the display area and cause poor insulation between terminal pins, and might affect display's electrical characteristics furthermore.
- 3) Do not use any harmful chemicals such as acetone, toluene, and isopropyl alcohol to clean display's surfaces.
- 4) Please use soft cloth or absorbent cotton with ethanol to clean the display by gently wiping. Moreover, when wiping the display, please wipe it by horizontal or vertical direction instead of circling to prevent leaving scars on the display's surface, especially polarizer.
- 5) Please wipe any unknown liquids immediately such as saliva, water or dew on the display to avoid color fading or any permanently damages.
- 6) Maximum pressure to the surface of the display must be less than 1.96×10^4 Pa. If the area of adding pressure is less than 1 cm^2 , the maximum pressure must be less than 1.96×10^4 Pa.

12.3 PRECAUTIONS OF OPERATING

- 1) Please input signals and voltages to the displays according to the values defined in the section of electrical characteristics to obtain the best performance. Any voltages over than absolute maximum rating will cause permanent damages to this display. Also, any timing of the signals out of this specification would cause unexpected performance.
- 2) When the display is operating at significant low temperature, the response time will be slower than it at 25 °C . In high temperature, the color will be slightly dark and blue compared to original pattern. However, these are temperature-related phenomenon of LCD and it will not cause permanent damages to the display when used within the operating temperature.
- 3) The use of screen saver or sleep mode is recommended when static images are likely for long periods of time. This is to avoid the possibility of image sticking.
- 4) Spike noise can cause malfunction of the circuit. The recommended limitation of spike noise is no bigger than ± 100 mV.

PAGE

12.4 PRECAUTIONS of STORAGE

If the displays are going to be stored for years, please be aware the following notices.

- 1) Please store the displays in a dark room to avoid any damages from sunlight and other sources of UV light.
- 2) The recommended long-term storage temperature is between 10 °C ~35 °C and 55%~75% humidity to avoid causing bubbles between polarizer and LCD glasses, and polarizer peeling from LCD glasses.
- 3) It would be better to keep the displays in the container, which is shipped from KOE, and do not unpack it.
- 4) Please do not stick any labels on the display surface for a long time, especially on the polarizer.

13. DESIGNATION of LOT MARK

1) The lot mark is showing in Fig.13.1. First 4 digits are used to represent production lot, T represented made in Taiwan, and the last 6 digits are the serial number.

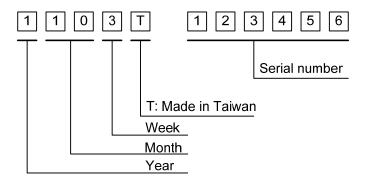


Fig. 13.1

2) The tables as below are showing what the first 4 digits of lot mark are shorted for.

Year	Lot Mark
2013	3
2014	4
2015	5
2016	6
2017	7

Month	Lot Mark	Month	Lot Mark
Jan.	01	Jul.	07
Feb.	02	Aug.	08
Mar.	03	Sep.	09
Apr.	04	Oct.	10
May	05	Nov.	11
Jun.	06	Dec.	12

Week	Lot Mark
1~7 days	1
8~14 days	2
15~21 days	3
22~28 days	4
29~31 days	5

- 3) Except letters I and O, revision number will be shown on lot mark and following letters A to Z.
- 4) The location of the lot mark is on the back of the display shown in Fig. 13.2.

Fig. 13.2

DATA MODUL

ALL TECHNOLOGIES. ALL COMPETENCIES. ONE SPECIALIST.

DATA MODUL AG Landsberger Straße 322 DE-80687 Munich

Phone: +49-89-56017-0

DATA MODUL WEIKERSHEIM GMBH Lindenstraße 8

DE-97990 Weikersheim Phone: +49-7934-101-0

More information and worldwide locations can be found at