

SPECIFICATION

TX18D206VM0BAA

7" TFT - WVGA - LVDS

Version: Date: 05.03.2021

Note: This specification is subject to change without prior notice

Kaohsiung Opto-Electronics Inc.

FOR MESSRS : _____

DATE : <u>Mar. 5th ,2021</u>

CUSTOMER'S ACCEPTANCE SPECIFICATIONS

TX18D206VM0BAA

Contents

No.	ITEM	SHEET No.	PAGE
1	COVER	7B64PS 2701-TX18D206VM0BAA-9	1-1/1
2	RECORD OF REVISION	7B64PS 2702-TX18D206VM0BAA-9	2-1/4~4/4
3	GENERAL DATA	7B64PS 2703-TX18D206VM0BAA-9	3-1/1
4	ABSOLUTE MAXIMUM RATINGS	7B64PS 2704-TX18D206VM0BAA-9	4-1/1
5	ELECTRICAL CHARACTERISTICS	7B64PS 2705-TX18D206VM0BAA-9	5-1/2~2/2
6	OPTICAL CHARACTERISTICS	7B64PS 2706-TX18D206VM0BAA-9	6-1/2~2/2
7	BLOCK DIAGRAM	7B64PS 2707-TX18D206VM0BAA-9	7-1/1
8	RELIABILITY TESTS	7B64PS 2708-TX18D206VM0BAA-9	8-1/1
9	LCD INTERFACE	7B64PS 2709-TX18D206VM0BAA-9	9-1/8~8/8
10	OUTLINE DIMENSIONS	7B64PS 2710-TX18D206VM0BAA-9	10-1/2~2/2
11	APPEARANCE STANDARD	7B64PS 2711-TX18D206VM0BAA-9	11-1/3~3/3
12	PRECAUTIONS	7B64PS 2712-TX18D206VM0BAA-9	12-1/2~2/2
13	DESIGNATION OF LOT MARK	7B64PS 2713-TX18D206VM0BAA-9	13-1/1

ACCEPTED BY: _____

PROPOSED BY: Oblack Tsai

PAGE 1-1/1

DATE	SHEET No.			SUMMAR	RY			
Aug.7.'15	7B64PS 2709 – TX18D206VM0BAA-2	9.1 INTERFACE F Revised :	IN CON	NECTIONS	6			
	PAGE 9-1/8	11	IN2- IN2+	B2~B5, I	DE			
		12	IN3-		00.07.1]	
		18	IN3+		G6~G7, I	80~87	-	
		19	Vled	12 VDC				
		11	IN2- IN2+	B2~B5, I	DE, VS, H	HS		
			IIN2+				_ _	
		17 18 19	NC	No Conr	nection			
	7B64PS 2709 – TX18D206VM0BAA-2	9.2 LVDS INTERF Revised :	ACE	CN				
		Controll 7 TA R0-R5,G0 7 TB G1-G5,B0,B1 7 TB B2-B5,NA,NA,DE 7 TC R6,R7,G6,G7,B6, B7,NA 7 TC CK CLK				Timing Controller With Multi-JF Receiver and Transmitter	LCD Pa control	
Feb.2,'16	7B64PS 2706 –	Machine Controll R0-R5,G0 G1-G5,B0,B1 7 TB B2-B5,HS,VS,DE CK CLK 6. OPTICAL CHAF		/DM83R 1) IN0+ IN1+ I		TFT-LCD 3) LVDM84B RA0-6 9 0 RB0-6 RC0-6 0 RC0-6 0 CK OUT	LCD Pai controll	
	TX18D206VM0BAA-3 PAGE 6-1/2	Revised :		Symbol	D.41			٦
		Color	Red	y y	Min. 0.28	Тур. 0.33	Max. 0.38	
		Chromaticity	White	x	0.27 0.30	0.32 0.35	0.37	
				y	0.30	0.33	0.40	
		Item		Symbol	Min.	Тур.	Max.	_
		Color Chromaticity	Red White	y x	0.27	0.32	0.37	-
		Chromaticity	VVIIILE	y x	0.20	0.31	0.38	

2. REC	ORD OF REVISI	ON		
DATE	SHEET No.	SUMMARY		
Feb.2,'16	7B64PS 2710 – TX18D206VM0BAA-3 PAGE 10-2/2	10.2 REAR VIEW Revised :		158.1
		0 11.5 17.9 15.0 15.		158.1
Jun.1,'16	7B64PS 2705 – TX18D206VM0BAA-4	5.1 LCD CHARACTERISTICS Revised : Note 1		
	PAGE 5-1/2			
	7B64PS 2705 – TX18D206VM0BAA-4 PAGE 5-2/2	5.2 BACKLIGHT CHARACTERISTICS Revised : Note 3 Fig1		
KAOHSIUNG	OPTO-ELECTRONICS INC	SHEET 7B64PS 2702- TX18D206VM0BAA-9 P	PAGE	2-2/4

DATE	SHEET No.			SUMMARY			
Feb.1,'17	7B64PS 2711 –	11.2 LCD A	PPEARAN	CE SPECIFICATION			
	TX18D206VM0BAA-5	Revised :					
	PAGE 11-2/3~3/3			Туре	Maximum	number	
				1 dot	4		
				2 adjacent dot	1		
			Bright dot-defect	3 adjacent dot or above	Not all	owed	
			-	Density	2(\$ 20)mm)	
		Dot-Defect		In total	5		A
		(Note 1)		1 dot	5	i	A
				2 adjacent dot	2	2	
			Dark dot-defect	3 adjacent dot or above	Not all	owed	
				Density	3(\operatorname{20}))mm)	
				In total	5		
				In total	1(C	
				\downarrow	1		
				Туре	Maximun	n numbei	r
			Bright dot-defect	1 dot	(D	
		Dot-Defect	Derle	1 dot	4	4	A
		(Note 1)	Dark dot-defect	2 dots	1(s	ets)	
				In total	2	4	
				In total	2	4	
		Note 1 : Re	evise The de	finitions of dot defea	ot		
May 8,'17	7B64 2709 –	9.3 TIMINO	S TABLE				
	TX18D206VM0BAA-6 Page 9-5/8	Added Note	e 1~2				
Jun. 6,'17	7B64 2709 –	9.2 LVDS I	NTERFACE				
	TX18D206VM0BAA-7 Page 9-2/8			$184B \rightarrow THC63LVI$	DF84B		
Sep.20,'19	7B64 2703 –	3.1 DISPLA	-	-	0.14		
	TX18D206VM0BAA-8 Page 3-1/1			mption 3.96W \rightarrow 4	.200		
	7B64 2705 –		GHT CHAR	ACTERISTICS			
	TX18D206VM0BAA-8 Page 5-2/2	Revised :	d Current T	yp. 330mA → 350n	<u>م</u>		
	raye 5-2/2	LED FOIWai		ax. 360mA \rightarrow 380m			
		LED lifetime		$_{\text{LED}} = 330 \text{mA} \rightarrow 350$			
		Note 1,3 : 3					
	7B64 2706 –	6. OPTICAL					
	TX18D206VM0BAA-8 Page 6-1/2	Revised : C	ondition I _{LED}	= 330mA → 350m	A		
					1		

2. RECORD OF REVISION

0 00 140	SHEET No.			SUMMA	RY			
Sep.20, 19	7B64 2713 –		ATION of LOT N	IARK				
	TX18D206VM0BAA-8	Added :						
	Page 13-1/1	B	REV.No ITEM B Back Light unit changed			REMARKS		
				unit change	a	PCN 1011		
Mar.5,'21	7B64 2703 –		FEATURES					
	TX18D206VM0BAA-9		orphous silicon		0.22/0/			
	Page 3-1/1		wer Consumptio		0.2300			
	7B64 2705 – TX18D206VM0BAA-9	5.1 LCD CH/ Revised :	ARACTERISTIC	5				
	Page 5-1/2		Item	Min.	Тур.	Ma	x	
			upply Current	-	136	17		
					150	17	0	
			Item	Min.	Тур.	Ma	Χ.	
		Power S	upply Current	-	70	13		
				1	.0			
	7B64 2710 -	10.2 REAR		00000				
	TX18D206VM0BAA-9 Page 10-2/2	Revised: 1a	pe dimension ch	lange				
	7B64 2713 – TX18D206VM0BAA-9	Added :	ATION of LOT N	η ΑΓΚ ΓΛ Ι				
	Page 13-1/1	REV.No	ľ	TEM		REMAR	s	
		C	LCD chang			PCN 102		
			LOD onling	cu		1 011 102	.0	

3. GENERAL DATA

3.1 DISPLAY FEATURES

This module is a 7" WVGA of 16:9 format LTPS TFT. The pixel format is vertical stripe and sub pixels are arranged as R (red), G (green), B (blue) sequentially. This display is RoHS compliant, COG (chip on glass) technology and LED backlight are applied on this display.

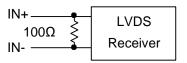
Part Name	TX18D206VM0BAA
Module Dimensions	167.7(W) mm x 109.5(H) mm x 9.0 (D) mm
LCD Active Area	152.4(W) mm x 91.44(H) mm
Pixel Pitch	0.1905(W) mm x 0.1905 (H) mm
Resolution	800 x 3(RGB)(W) x 480(H) Dots
Color Pixel Arrangement	R, G, B Vertical Stripe
LCD Type	Transmissive Color TFT; Normally Black
Display Type	Active Matrix
Number of Colors	262k Colors (6-bit RGB)
Backlight	Light Emitting Diode (LED)
Weight	231 g
Interface	LVDS; 20 pins
Power Supply Voltage	3.3V for LCD; 12V for Backlight
Power Consumption	0.23W for LCD; 4.2W for Backlight
Viewing Direction	Super Wide Version (In-Plane Switching)

NO.

4. ABSOLUTE MAXIMUM RATINGS

Item	Symbol	Min.	Max.	Unit	Remarks
Supply Voltage	V _{DD}	-0.3	4.0	V	-
Input Voltage of Logic	VI	-0.3	V _{DD} +0.3	V	Note 1
Operating Temperature	Тор	-40	85	°C	Note 2
Storage Temperature	Tst	-40	90	°C	Note 2
Backlight Input Voltage	VLED	-	14	V	-

Note 1: The rating is defined for the signal voltages of the interface such as CLK and pixel data pairs.

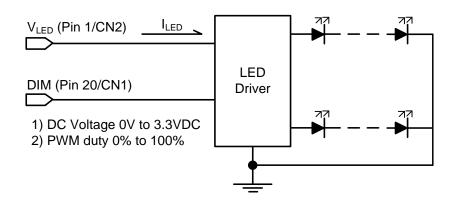

- Note 2: The maximum rating is defined as above based on the chamber temperature, which might be different from ambient temperature after assembling the panel into the application. Moreover, some temperature-related phenomenon as below needed to be noticed:
 - Background color, contrast and response time would be different in temperatures other than $25\,^\circ\mathrm{C}\,.$
 - Operating under high temperature will shorten LED lifetime.

5. ELECTRICAL CHARACTERISTICS

5.1 LCD CHARACTERISTICS

5.1 LCD CHARACTE	ERISTICS				7	√ _a =25 °C	$V_{\rm SS} = 0V$
Item	Symbol	Condition	Min.	Тур.	Max.	Unit	Remarks
Power Supply Voltage	Vdd	-	3.0	3.3	3.6	V	-
Differential Input Voltage for LVDS		"H" level	-	-	+100		
Receiver Threshold	Vı	"L" level	-100	-	-	mV	Note 1
Power Supply Current	IDD	V _{DD} =3.3V	-	70	130	mA	Note 2
Frame Frequency	<i>fFrame</i>	-	-	60	65	Hz	
CLK Frequency	f_{CLK}	-	31.5	33.3	36	MHz	

Note 1: VCM 1.2V is common mode voltage of LVDS transmitter and receiver. The input terminal of LVDS transmitter is terminated with 100Ω .


Note 2: An all white check pattern is used when measuring IDD. *f*_{Frame} is set to 60 Hz. Moreover, 1.0A fuse is applied in the module for IDD. For display activation and protection purpose, power supply is recommended larger than 2.5A to start the display and break fuse once any short circuit occurred.

KAOHSIUNG OPTO-ELECTRONICS INC.	SHEET NO.	7B64PS 2705- TX18D206VM0BAA-9	PAGE	5-1/2
---------------------------------	--------------	-------------------------------	------	-------

5.2 BACKLIGHT CHARACTERISTICS							
Item	Symbol	Condition	Min.	Тур.	Max.	Unit	Remarks
LED Input Voltage	V_{LED}	-	11.0	12.0	13.0	V	Note1
LED Forward Current		0V; 0% duty	-	350	380		Nata 2
(Dim Control)	ILED	3.3VDC; 100% duty	10	20	30	mA	Note 2
LED lifetime	-	I _{LED} = 350 mA	-	70K	-	hrs	Note 3

Note 1: As Fig. 5.1 shown, LED current is constant, 350mA, controlled by the LED driver when applying 12V.

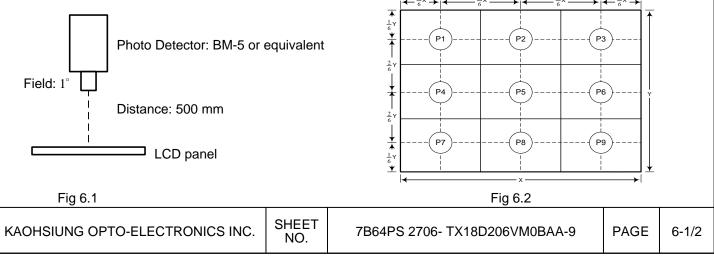
- Note 2: Dimming function can be obtained by applying DC voltage or PWM signal from the display interface CN1. The recommended PWM signal is 1K ~ 10K Hz with 3.3V amplitude.
- Note 3: The estimated lifetime is specified as the time to reduce 50% brightness by applying 350mA at $25\,^\circ\mathrm{C}\,$.

6. OPTICAL CHARACTERISTICS

The optical characteristics are measured based on the conditions as below:

- Supplying the signals and voltages defined in the section of electrical characteristics.
- The backlight unit needs to be turned on for 30 minutes.
- The ambient temperature is 25 $^{\circ}\mathrm{C}\,.$

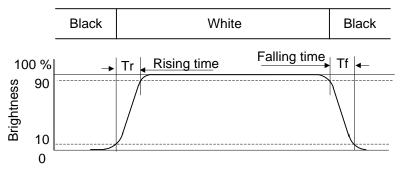
- In the dark room less than 100 lx, the equipment has been set for the measurements as shown in Fig 6.1.


					T_a	$= 25 \ ^{\circ}C, f$	$f_{Frame} = 60 \text{ Hz}$	z, Vdd = 3.3V
Item		Symbol	Condition	Min.	Тур.	Max.	Unit	Remarks
Brightness o	f White	-		640	800	-	cd/m ²	Note 1
Brightness U	niformity	-	$\phi = 0^{\circ}, \theta = 0^{\circ},$	70	-	-	%	Note 2
Contrast F	Ratio	CR	I _{LED} = 350 mA	700	1000	-	-	Note 3
Response	Time	$T_r + T_f$	$\phi = 0^\circ, \theta = 0^\circ$	-	30	40	ms	Note 4
NTSC R	atio	-	$\phi = 0^\circ, \theta = 0^\circ$	-	70	-	%	-
		$\theta \mathbf{x}$	$\phi = 0^\circ, CR \ge 10$	-	85	-		
	nalo	$\theta \mathbf{x}'$	φ=180°, CR≥10	-	85	-	Degree	Noto F
Viewing A	Ingle	<i>θ</i> у	φ = 90°, CR≥10	-	85	-	Degree	Note 5
		θ y'	φ = 270°, CR ≥10	-	85	-		
	Ded	Х		0.60	0.65	0.70		
	Red	Y		0.27	0.32	0.37		
	Crear	Х		0.27	0.32	0.37		
Color	Green	Y		0.56	0.61	0.66		
Chromaticity	Blue	Х	$\phi = 0^\circ, \theta = 0^\circ$	0.10	0.15	0.20	-	Note 6
	Diue	Y		0.01	0.06	0.11		
	White	Х		0.26	0.31	0.36		
	vville	Y		0.28	0.33	0.38		

Note 1: The brightness is measured from the center point of the panel, P5 in Fig. 6.2, for the typical value.

Note 2: The brightness uniformity is calculated by the equation as below:

Brightness uniformity = $\frac{\text{Min. Brightness}}{\text{Max. Brightness}}$ X100%


which is based on the brightness values of the 9 points in active area measured by BM-5 as shown in Fig. 6.2.

Note 3: The Contrast Ratio is measured from the center point of the panel, P5, and defined as the following equation:

 $CR = \frac{Brightness of White}{Brightness of Black}$

Note 4: The definition of response time is shown in Fig. 6.3. The rising time is the period from 10% brightness to 90% brightness when the data is from black to white. Oppositely, Falling time is the period from 90% brightness falling to 10% brightness.

Note 5: The definition of viewing angle is shown in Fig. 6.4. Angle ϕ is used to represent viewing directions, for instance, $\phi = 270^{\circ}$ means 6 o'clock, and $\phi = 0^{\circ}$ means 3 o'clock. Moreover, angle θ is used to represent viewing angles from axis Z toward plane XY.

The display is super wide viewing angle version, so that the best optical performance can be obtained from every viewing direction.

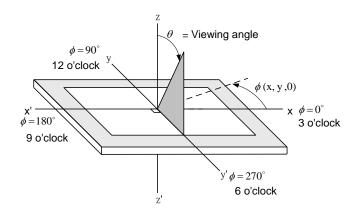
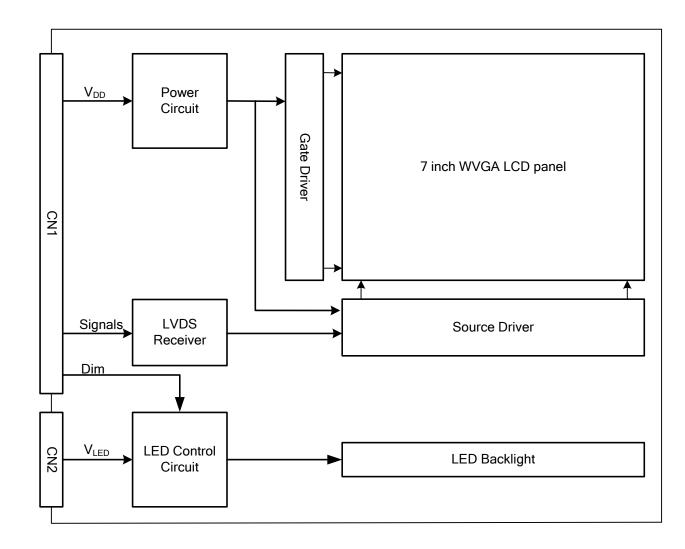
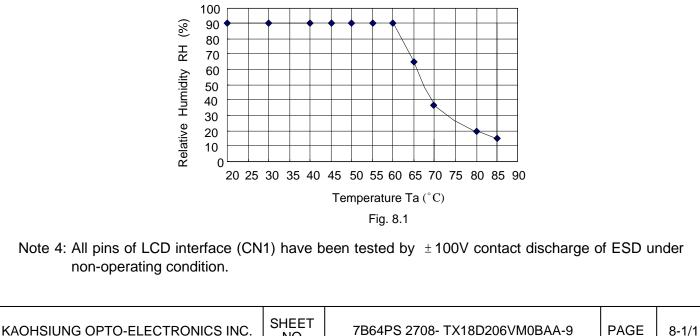



Fig 6.4

Note 6: The color chromaticity is measured from the center point of the panel, P5, as shown in Fig. 6.2.

7. BLOCK DIAGRAM


Note 1: Signals are CLK and pixel data pairs.

8. RELIABILITY TESTS

Test Item	Condition	
High Temperature	1) Operating 2) 85 °C	500 hrs
Low Temperature	1) Operating 2) -40 °C	500 hrs
High Temperature	1) Storage 2) 90 °C	500 hrs
Low Temperature	1) Storage 2) -40 °C	500 hrs
Heat Cycle	1) Operating 2) -40° _C ~85°C 3) 3hrs~1hr~3hrs	500 hrs
Thermal Shock	1) Non-Operating 2) -40 °C ↔ 85 °C 3) 0.5 hr ↔ 0.5 hr	500 hrs
High Temperature & Humidity	 Operating 60 °C & 90%RH Without condensation 	500 hrs (Note 3)
Vibration	 Non-Operating 10~200 Hz 5G X, Y, and Z directions 	1 hr for each direction
Mechanical Shock	1) Non-Operating 2) 10 ms 3) 80G 4) $\pm X$, $\pm Y$ and $\pm Z$ directions	Once for each direction
ESD	 Depending Tip: 150 pF, 330 Ω Air discharge for glass: ± 12KV Contact discharge for metal frame: ± 15KV 	 Glass: 9 points Metal frame: 8 points (Note4)

Note 1: Display functionalities are inspected under the conditions defined in the specification after the reliability tests.

- Note 2: The display is not guaranteed for use in corrosive gas environments.
- Note 3: Under the condition of high temperature & humidity, if the temperature is higher than 60°C, the humidity needs to be reduced as Fig. 8.1 shown.

NO.

9. LCD INTERFACE

9.1 INTERFACE PIN CONNECTIONS

The display interface connector (CN1) is FI-SEB20P-HF13E-E1500 made by JAE and pin assignment is as below:

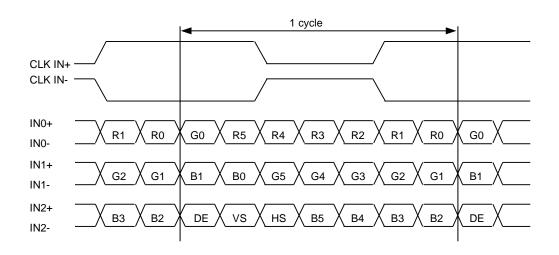
Pin No.	Symbol	Signal	Pin No.	Symbol	Signal
1	V _{DD}	Device Oversky for Lonia	11	IN2-	
2	V _{DD}	Power Supply for Logic	12	IN2+	B2~B5, DE, VS, HS
3	LR	Horizontal Display mode Control	13	V _{SS}	GND
4	UD	Vertical synchronous signal	14	CLK IN-	Divel Cleak
5	IN0-		15	CLK IN+	Pixel Clock
6	IN0+	- R0~R5, G0	16	Vss	GND
7	Vss	GND	17	NC	
8	IN1-	C1 C5 D0 D1	18	NC	No Connection
9	IN1+	G1~G5, B0~B1	19	NC	
10	Vss	GND	20	DIM	Note 2

Note 1: IN n- and IN n+ (n=0, 1, 2), CLK IN- and CLK IN+ should be wired by twist-pairs or side-by-side FPC patterns, respectively.

Note 2: Normal brightness: 0V or 0% PWM duty; Brightness control: 0V to 3.3V DC or 0% to 100% PWM duty.

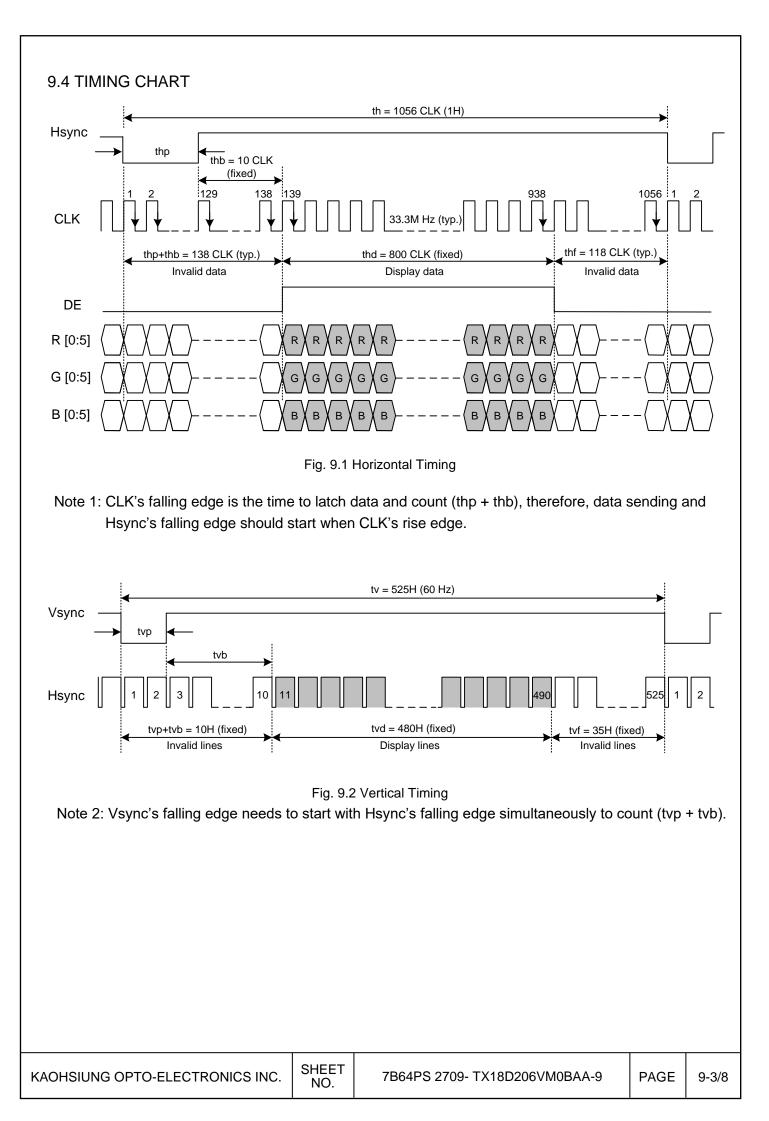
Note 3: Please refer to <u>9.8 SCAN DIRECTION</u> for the setting methods of UD, LR function.

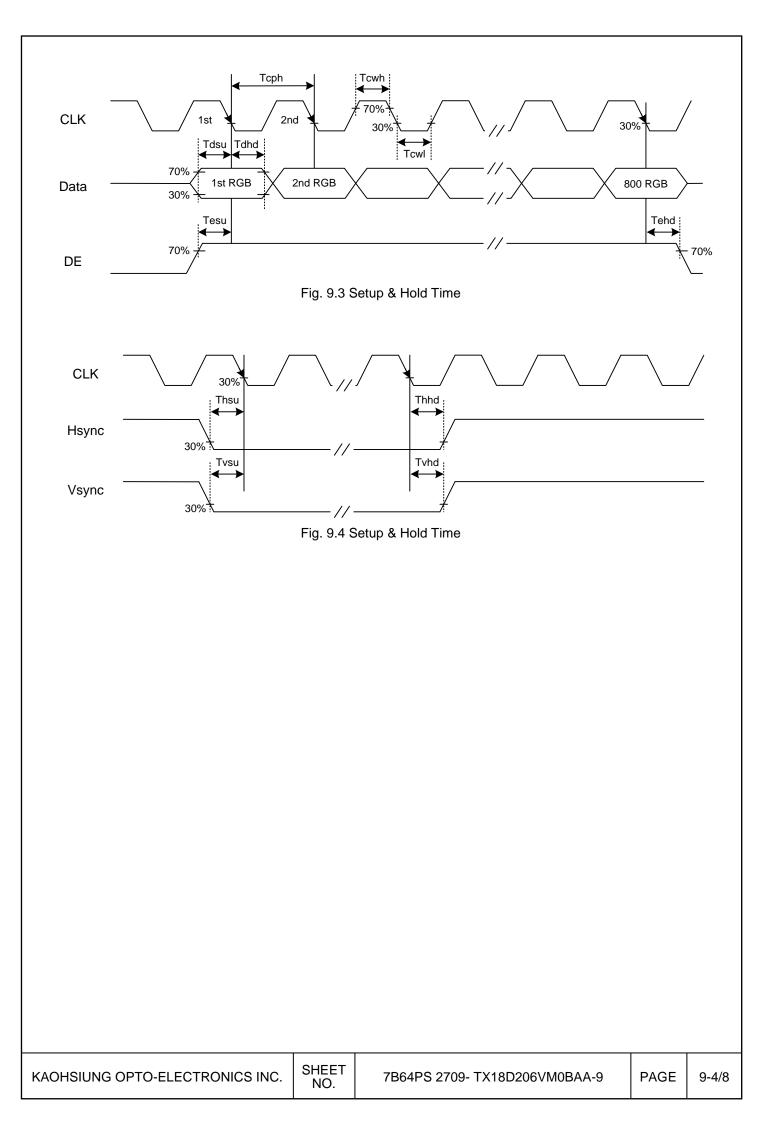
The backlight connector (CN2) is SM02 (8.0)B-BHS-1-TB(LF)(SN), and pin assignment is as below:


Pin No.	Signal	Signal
1	V _{LED}	12VDC
2	GND	Ground

9.2 LVDS INTERFACE

			CN1	-		S. 1
N	Machine Side		(interface)	TFT-LCD Side		
Controll		2) THC63LVDM83R	1)	3) THC63LVDF	84B	
R0-R5,G0	7 TA0-6		INO+ INO-		RA0-6	
G1-G5,B0,B1	<u>7 TB0-6</u>	TFT allel-tc	IN1+ IN1-		RB0-6	
B2-B5,HS,VS,DE	<u>7 TC0-6</u>	TFT TFT LVDS	IN2+ IN2-	TFT LVDS	RC0-6	LCD Panel
СК	CLK IN	- PLL - 2	CLK IN+ CLK IN-		CK OUT	controller


- Note 1: LVDS cable impedance should be 100 ohms per signal line when each 2-lines (+, -) is used in differential mode.
- Note 2: The recommended transmitter, THC63LVDM83R, is made by Thine or equivalent, which is not contained in the module.


9.3 LVDS DATA FORMAT

DE: Display Enable

- HS: Horizontal synchronous signal
- VS: Vertical synchronous signal

9.5 TIMING TABLE

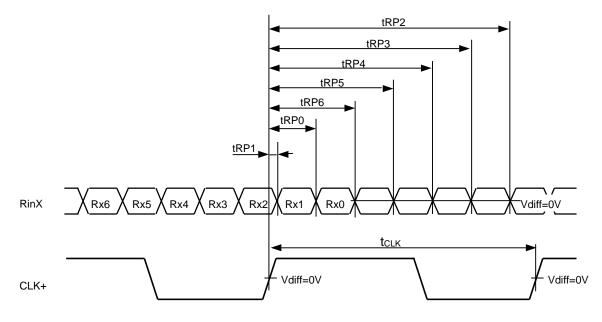
The column of timing sets including minimum, typical, and maximum as below are based on the best optical performance, frame frequency (f_{Frame}) = 60Hz to define. If 60 Hz is not the aim to set, less than 65 Hz for f_{Frame} is recommended to apply for better performance by other parameter combination as the definitions in section 5.1.

A. Horizontal and Vertical Timing

Item		Symbol	Min.	Тур.	Max.	Unit	
	CLK Frequency	fclk	31.5	33.3	36	MHz	
Horizontal	Display Data	thd		800			
	Cycle Time	th	1000	1056	1144	CLK	
Martiaal	Display Line	tvd		480			
Vertical	Cycle Time	tv	525			Н	

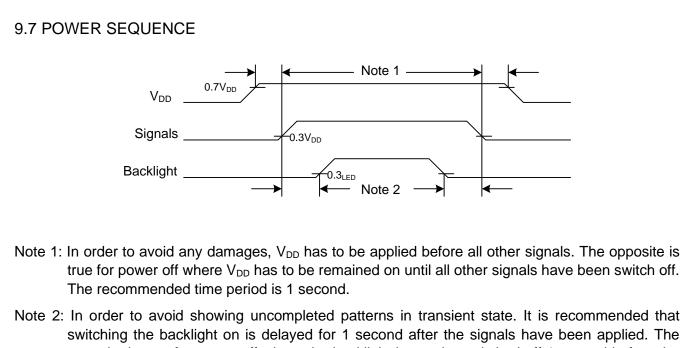
Note 1: tvp,tvb,tvd,tvf should keep all of following conditions

- a) tvf \geq 4 lines
- b) tvd + tvf should be ODD
- c) tvp + tvb should be EVEN
- d) The surplus of (tvd + tvf -2)/8 should be equal or less than 3


Note 2: thp + thb should be equal or large than 26

B. CLOCK AND DATA INPUT TIMING

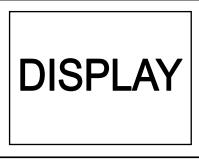
	Item	Symbol	Min.	Тур.	Max.	Unit
	Duty	Tcwh	46	50	52.5	%
CLK	Cycle Time	Tcph	27.8	30	-	
	Setup Time	Tvsu	7	-	-	
Vsync	Hold Time	Tvhd	8	-	-	
	Setup Time	Thsu	8	-	-	
Hsync	Hold Time	Thhd	8	-	-	ns
Data	Setup Time	Tdsu	7	-	-	
Data	Hold Time	Tdhd	6	-	-	
DE	Setup Time	Tesu	8	-	-	
DE	Hold Time	Tehd	8	-	-	


NO.

9.6 LVDS RECEIVER TIMING

RinX= (RinX+)-(RinX-) (X=0, 1, 2)

Item		Symbol	Min.	Тур.	Max.	Unit
CLK	Cycle frequency	1/tcLK	31.5	33.3	36	MHz
	0 data position	tRP0	1/7* t _{CLK} -0.49	1/7* t _{СLК}	1/7* t _{CLK} +0.49	
1st data	1st data position	tRP1	-0.49	0	+0.49	
DiaV	2nd data position	tRP2	6/7* t _{CLK} -0.49	6/7* t _{СLK}	6/7* t _{CLK} +0.49	
RinX	3rd data position	tRP3	5/7* t _{CLK} -0.49	5/7* t _{СLК}	5/7* tclк +0.49	ns
(X=0,1,2)	4th data position	tRP4	4/7* t _{CLK} -0.49	4/7* t _{СLК}	4/7* t _{CLK} +0.49	
	5th data position	tRP5	3/7* t _{CLK} -0.49	3/7 * t _{СLK}	3/7* tclк +0.49	
	6th data position	tRP6	2/7* t _{CLK} -0.49	2/7* t _{СLК}	2/7* tclк +0.49	



opposite is true for power off where the backlight has to be switched off 1 second before the signals are removed.

Note 3: In order to avoid high Inrush current, V_{DD} rising time need to set more than 0.5ms.

9.8 SCAN DIRECTION

Scan direction is available to be switched as below by setting CN1's UD & LR pin.

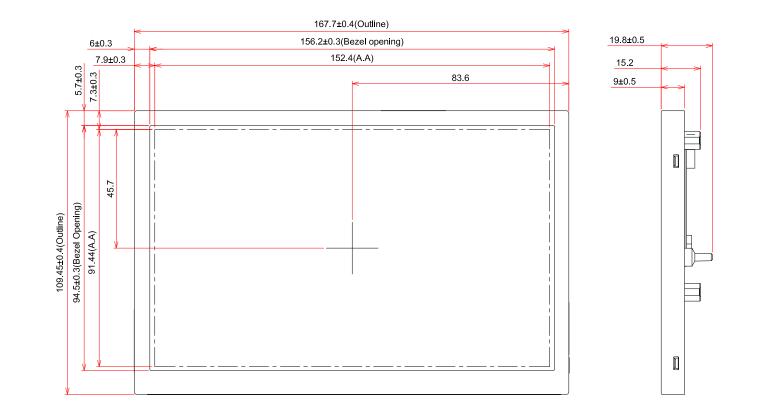

 $\mathsf{UD}:\mathsf{L} \text{ or Open} ; \mathsf{LR}:\mathsf{L} \text{ or Open}$

 $\mathsf{UD}:\mathsf{H};\mathsf{LR}:\mathsf{L}\text{ or Open}$

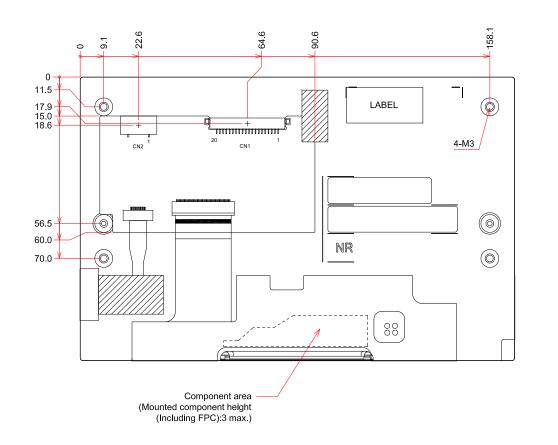
UD: L or Open; LR: H

$\mathsf{UD}:\mathsf{H};\mathsf{LR}:\mathsf{H}$

KAOHSIUNG OPTO-ELECTRONICS INC.	SHEET NO.	7B64PS 2709- TX18D206VM0BAA-9	PAGE	9-7/8
---------------------------------	--------------	-------------------------------	------	-------


9.9 DATA INPUT for DISPLAY COLOR

				Red	Data				Ģ	Greer	n Dat	а		Blue Data					
Inpu	it color	R5	R4	R3	R2	R1	R0	G5	G4	G3	G2	G1	G0	B5	B4	B3	B2	B1	B0
		MSE	3				LSB	MSE	3				LSB	MSE	3				LSB
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(63)	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
	Green(63)	0	0	0	0	0	0	1	1	1	1	1	1	0	0	0	0	0	0
Basic	Blue(63)	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1
Color	Cyan	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1
	Magenta	1	1	1	1	1	1	0	0	0	0	0	0	1	1	1	1	1	1
	Yellow	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0
	White	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red (1)	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0
	Red (2)	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0
Red	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
	Red (62)	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red (63)	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green (1)	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0
	Green (2)	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0
Green	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
	Green (62)	0	0	0	0	0	0	1	1	1	1	1	0	0	0	0	0	0	0
	Green (63)	0	0	0	0	0	0	1	1	1	1	1	1	0	0	0	0	0	0
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Blue (1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
	Blue (2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
Blue	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
	Blue (62)	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	0
	Blue (63)	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1


Note 1: Definition of gray scale : Color(n) Number in parenthesis indicates gray scale level. Larger number corresponds to brighter level.

Note 2: Data Signal : 1 : High, 0 : Low

10. OUTLINE DIMENSIONS 10.1 FRONT VIEW

General Tolerance:±0.5mm Scale : NTS Unit : mm 10.2 REAR VIEW

General Tolerance:±0.5mm Scale : NTS Unit : mm

11. APPEARANCE STANDARD

The appearance inspection is performed in a room around 500~1000 lx based on the conditions as below:

- The distance between inspector's eyes and display is 30 cm.
- The viewing zone is defined with angle θ shown in Fig. 11. The inspection should be performed within 45° when display is shut down. The inspection should be performed within 5° when display is power on.

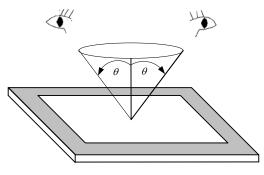
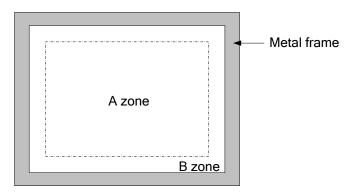


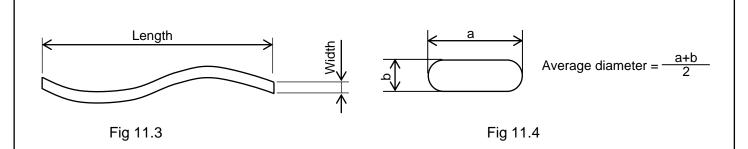
Fig. 11.1

11.1 THE DEFINITION OF LCD ZONE

LCD panel is divided into 2 areas as shown in Fig.11.2 for appearance specification in next section. A zone is the LCD active area (dot area); B zone is the area between A zone and metal frame.

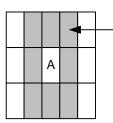
In terms of housing design, B zone is the recommended window area customers' housing should be located in.




Fig. 11.2

KAOHSIUNG OPTO-ELECTRONICS INC.	SHEET NO.	7B64PS 2711- TX18D206VM0BAA-9	PAGE	11-1/3
---------------------------------	--------------	-------------------------------	------	--------

11.2 LCD APPEARANCE SPECIFICATION


The specification as below is defined as the amount of unexpected phenomenon or material in different zones of LCD panel. The definitions of length, width and average diameter using in the table are shown in Fig. 11.3 and Fig. 11.4.

Item			Cri	teria			Applied zone	
	Length (mm) Wic		dth (mm) Maximum nu		umber	Minimum space		
	Ignored		0.01	Ignored		-		
	L≦40	W≦	W≦0.02 10		-			
	L≦20	W≦	0.04	10		-		
Scratches			Round (E	Dot Shape)			A · B	
	Average diameter	(mm)	Maxim	um number	Mir	nimum space		
	D≦0.2		l	gnore		-		
	D≦0.4			10		-		
Dent		Se	rious one	is not allowed			А	
Wrinkles in polarizer		Se	rious one	is not allowed			А	
	Average diam	neter (m	m)	Max	kimum n	umber		
Dubbles on relation	D	≦0.3	Ignore			d	А	
Bubbles on polarizer	0.3 <d< td=""><td>≦0.5</td><td></td><td></td><td>10</td><td></td><td colspan="2">~</td></d<>	≦0.5			10		~	
	0.5 <d< td=""><td>≦1.0</td><td></td><td></td><td>5</td><td></td><td></td></d<>	≦1.0			5			
		Fila	amentous	(Line shape)				
	Length (mm)		Width	n (mm)	Max	imum number		
	Ignored		W≦	≦0.02		Ignored	A ∖ B	
	L≦2.0		W≦0.03		10			
1) Stains	L≦1.0		W≦0.06			10		
2) Foreign Materials			Round (Dot shape)				
3) Dark Spot	Average diameter (r	mm)	Maximum number			imum Space		
of Dark Opor	D≦0.22		Ign	ored		-		
	$0.22 < D \le 0.33$			5		-	A \ B	
	0.33 <d< td=""><td></td><td></td><td>0</td><td></td><td>-</td><td></td></d<>			0		-		
	In total			Filamentous -	⊦ Round	=10		
		Those	wiped out e	asily are accept	able			
				уре	Max	imum number		
	Bright dot-defec	t		dot	0			
Dot-Defect				dot		4	А	
(Note 1)	Dark dot-defect		2	dots		1(sets)	A	
			In	total		4		
		In tota	al			4		

Note 1: The definitions of dot defect are as below:

- For bright dot-defect, showing black pattern, visible with 5% ND filter is defined.
- For dark dot-defect, showing white pattern, defect size over 1/2 dot area is defined.
- The definition of 1-dot-defect is the defect-dot, which is isolated and no adjacent defect-dot.
- The definition of adjacent dot is shown as Fig. 11.5.
- The Density of dot defect is defined in the area within diameter ϕ =10mm.

The dots colored gray are adjacent to defect-dot A.

KAOHSIUNG OPTO-ELECTRONICS INC.	SHEET NO.	7B64PS 2711- TX18D206VM0BAA-9	PAGE	11-3/3

12. PRECAUTIONS

12.1 PRECAUTIONS of ESD

- 1) Before handling the display, please ensure your body has been connected to ground to avoid any damages by ESD. Also, do not touch display's interface directly when assembling.
- 2) Please remove the protection film very slowly before turning on the display to avoid generating ESD.

12.2 PRECAUTIONS of HANDLING

- 1) In order to keep the appearance of display in good condition; please do not rub any surfaces of the displays by sharp tools harder than 3H, especially touch panel, metal frame and polarizer.
- 2) Please do not pile the displays in order to avoid any scars leaving on the display. In order to avoid any injuries, please pay more attention for the edges of glasses and metal frame, and wear finger cots to protect yourself and the display before working on it.
- 3) Touching the display area or the terminal pins with bare hand is prohibited. This is because it will stain the display area and cause poor insulation between terminal pins, and might affect display's electrical characteristics furthermore.
- 4) Do not use any harmful chemicals such as acetone, toluene, and isopropyl alcohol to clean display's surfaces.
- 5) Please use soft cloth or absorbent cotton with ethanol to clean the display by gently wiping. Moreover, when wiping the display, please wipe it by horizontal or vertical direction instead of circling to prevent leaving scars on the display's surface, especially polarizer.
- 6) Please wipe any unknown liquids immediately such as saliva, water or dew on the display to avoid color fading or any permanently damages.
- 7) Maximum pressure to the surface of the display must be less than $1,96 \times 10^4$ Pa. If the area of adding pressure is less than 1 cm^2 , the maximum pressure must be less than 1.96N.

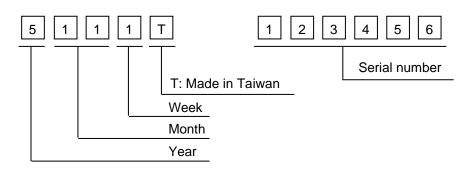
12.3 PRECAUTIONS of OPERATING

- Please input signals and voltages to the displays according to the values defined in the section of electrical characteristics to obtain the best performance. Any voltages over than absolute maximum rating will cause permanent damages to this display. Also, any timing of the signals out of this specification would cause unexpected performance.
- 2) When the display is operating at significant low temperature, the response time will be slower than it at 25 C°. In high temperature, the color will be slightly dark and blue compared to original pattern. However, these are temperature-related phenomenon of LCD and it will not cause permanent damages to the display when used within the operating temperature.
- 3) The use of screen saver or sleep mode is recommended when static images are likely for long periods of time. This is to avoid the possibility of image sticking.
- 4) Spike noise can cause malfunction of the circuit. The recommended limitation of spike noise is no bigger than \pm 100 mV.

12.4 PRECAUTIONS of STORAGE

If the displays are going to be stored for years, please be aware the following notices.

- 1) Please store the displays in a dark room to avoid any damages from sunlight and other sources of UV light.
- 2) The recommended long-term storage temperature is between 10 C° ~35 C° and 55%~75% humidity to avoid causing bubbles between polarizer and LCD glasses, and polarizer peeling from LCD glasses.
- 3) It would be better to keep the displays in the container, which is shipped from KOE, and do not unpack it.
- 4) Please do not stick any labels on the display surface for a long time, especially on the polarizer.


12.5 PRECAUTIONS of IMAGE STICKING

- 1) Do not display the fixed image or very frequently repeated clips in a long period of time, it may cause image sticking on display. Even a video of several minutes, which is played in a loop, is considered as repetitive.
- Screensaver or power saving mode is recommended to avoid image sticking effectively. Using moving images, scrolling text and alternating a fixed image with a moving image, are the ideal ways to reduce the possibility of image sticking.
- 3) Additionally, it is important to avoid using static bars at image boundaries. Typically, such bars are a result of difference in aspect ratio (e.g., playing 4:3 content on a 16:9 display).

KAOHSIUNG OPTO-ELECTRONICS INC.	SHEET NO.	7B64PS 2712- TX18D206VM0BAA-9	PAGE	12-2/2
---------------------------------	--------------	-------------------------------	------	--------

13. DESIGNATION of LOT MARK

1) The lot mark is showing in Fig.13.1. First 4 digits are used to represent production lot, T represented made in Taiwan, and the last 6 digits are the serial number.

Fig.	13.1
3	

2) The tables as below are showing what the first 4 digits of lot mark are shorted for.

Year	Lot Mark
2015	5
2016	6
2017	7
2018	8
2019	9

Month	Lot Mark	Month	Lot Mark
Jan.	01	Jul.	07
Feb.	02	Aug.	08
Mar.	03	Sep.	09
Apr.	04	Oct.	10
May	05	Nov.	11
Jun.	06	Dec.	12

Week	Lot Mark
1~7 days	1
8~14 days	2
15~21 days	3
22~28 days	4
29~31 days	5

3) Except letters I and O, revision number will be shown on lot mark and following letters A to Z.

REV.No	ITEM	REMARKS
А	-	-
В	Back Light unit changed	PCN 1011
С	LCD changed	PCN 1025

4) The location of the lot mark is on the back of the display shown in Fig. 13.2.

Label example :

Fig. 13.2

DATA MODUL

ALL TECHNOLOGIES. ALL COMPETENCIES. ONE SPECIALIST.

DATA MODUL AG Landsberger Straße 322 DE-80687 Munich Phone: +49-89-56017-0 DATA MODUL WEIKERSHEIM GMBH Lindenstraße 8 DE-97990 Weikersheim Phone: +49-7934-101-0

More information and worldwide locations can be found at

www.data-modul.com