Hardware Documentation

armStone™MX8M for HW Revision 1.00

Version 002 (2020-09-14)

© F&S Elektronik Systeme GmbH Untere Waldplätze 23 D-70569 Stuttgart Phone: +49(0)711-123722-0 Fax: +49(0)711-123722-99

About This Document

This document describes how to use the armStone[™]MX8M</sup> board with mechanical and electrical information. The latest version of this document can be found at:

http://www.fs-net.de.

ESD Requirements

All F&S hardware products are ESD (electrostatic sensitive devices). All products are handled and packaged according to ESD guidelines. Please do not handle or store ESD-sensitive material in ESD-unsafe environments. Negligent handling will harm the product and warranty claims become void.

History

Date	V	Platform	A,M,R	Chapter	Description	Au
07.10.2019	001	All		-	Initial Version	MW
17.07.2020	002	All	А	7	Add ADP-NT24V2	MW
V Version						
A M R Added Modified Removed						

A,M,R Added, Modified, Removed

Au Author

Table of Contents

Abc	out This	Document	2
ES) Requi	rements	2
Hist	tory		2
Tab	le of Co	ontents	3
1	Block	Diagram	5
2		anical Dimension	6
-	2.1	Connectors Layout	-
3	Interfa	ace and Signal Description	9
-	3.1	Power Supply	9
4	Interfa	aces	10
	4.1	USB Host	10
	4.2	USB OTG	11
	4.3	Micro SD / Micro SIM card	12
	4.4	Feature Connector	13
	4.5	Ethernet Interface	16
	4.6	PCIE Interface	17
	4.7	HDMI Interface	19
	4.8	LVDS Interface	20
	4.9	Touch Interface	21
	4.10	Backlight Interface	21
	4.10.1	Solution with a single cable with 3 connectors	22
	4.10.2	Solution with 2 cable with 2 connectors each	22
	4.11	MIPI CSI Interface	23
	4.12	WLAN and Bluetooth Interface (optional)	23
	4.13	GPIO	23
	4.14	JTAG	24
	4.15	Power and Power Control Pins	25
5	Flash		27
	5.1	NAND Flash	27
	5.2	eMMC	27
6	RTC		27
7	ADP-N	NT24V2	28
8	Electr	ical characteristic	28
	8.1	Absolute maximum ratings	28
	8.2	DC Electrical Characteristics	28
9	Therm	nal Specification	30

10	Review service	31
11	ESD and EMI implementing on COM	31
12	Second source rules	31
13	Power consumption and cooling	31
14	Storage conditions	32
15	ROHS and REACH statement	32
16	Packaging	32
17	Matrix Code Sticker	32
18	Appendix	33
	Important Notice	
	Warranty Terms	
19	Content	35

1 Block Diagram

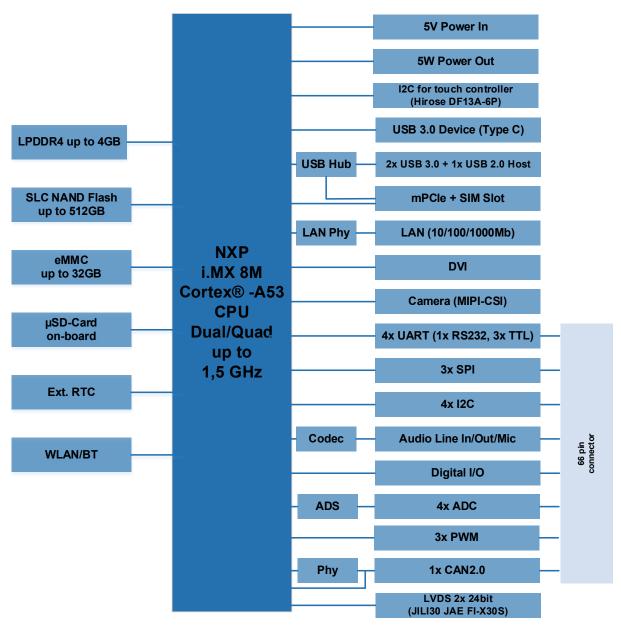


Figure 1: Block Diagram

2 Mechanical Dimension

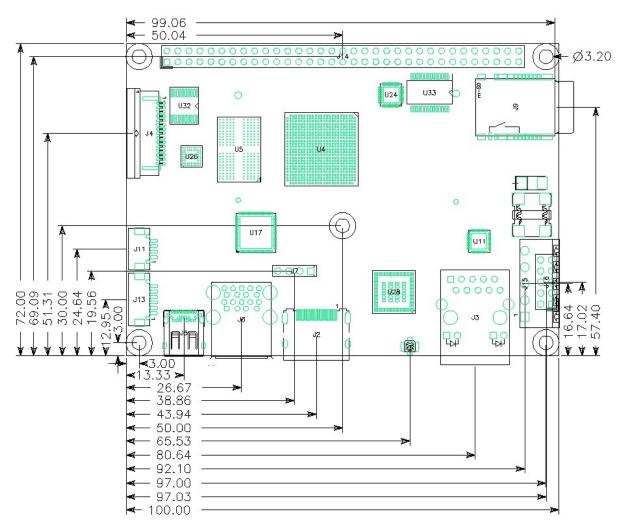


Figure 2: Mechanical Dimension Top

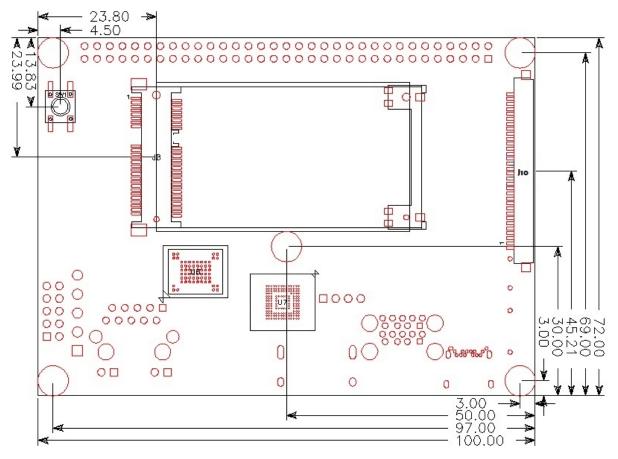


Figure 3: Mechanical Dimension Bottom

Dimensions	Description
Size	100mm x 72mm
PCB Thickness	1.5mm ± 0.1mm
Height of the parts on the top side	15.5mm
Height of the parts on the bottom side	5.9mm
Weight	55gr.

Table 1: Mechanical Dimensions

3D Step model available, please contact support@fs-net.de

2.1 Connectors Layout

All connectors and Pin 1 markers shown in the mechanical dimensions.

	Description	Remarks
J2	HDMI	Top Side, 19 Pins
J3	Ethernet 1xGBit RJ45 With Integrated Magnetics	Top Side, 14 Pins
J4	Camera-Connector	Top Side, 15 Pins
J5	USB-Device, USB Type-C Connector	Top Side, 24 Pins
J6	USB-Host, Stacked USB Type-A Connector	Top Side, 18 Pins
J7	USB-Host, Internal 2.54mm Pitch Connector	Top Side, 4 Pins
J8	Mini-PCE Express Connector	Bottom Side, 52 Pins
J9	MicroSD / MicroSIM Connector	Top Side, 22 Pins
J10	LVDS-Connector	Bottom Side, 30 Pins
J11	Backlight Connector	Top Side, 4 Pins
J12	WLAN IPEX Antenna Connector	Top Side, 2 Pins
J13	Touch Connector	Top Side, 6 Pins
J14	Feature Connector, 2.54mm Pitch Connector	Top Side, 66 Pins
J15	Power Connector	Top Side, 5 Pins
J16	Power Connector, 2.54mm Pitch Connector	Top Side, 10 Pins

Table 2: Connectors Layout

3 Interface and Signal Description

3.1 Power Supply

The armStone board has per default a 5 way connector with 3,81mm pitch for an external DC power supply. The connector is compatible to F&S power supply <u>ADP-NT24V2</u> (IN 13-36V, OUT 5V+12V)

Connector Base Board: Würth WR-TBL Series 322 – 5- pins

Matching Connector: Würth WR-TBL Series 2109.

J15 Pin	Signal Name	I/O	Remarks
1	NC		
2	VBAT_IN	PWR	Voltage: 2.2V-3.45V (*Optional for external RTC voltage supply)
3	+V5.0_IN	PWR	Voltage: 4.5V-5.5V
4	GND_IN	PWR	
5	+V3.3	OUT	

Optional a 10 pin connector with 2.54mm pitch can be placed.

Table 3: Power J15 Connector Pin Layout

J16 Pin	Signal Name	I/O	Remarks
1	VBAT_IN	PWR	Voltage: 2.2V-3.45V (*Optional for external RTC voltage supply)
2	VBAT_IN	PWR	Voltage: 2.2V-3.45V (*Optional for external RTC voltage supply)
3	+V5.0_IN	PWR	Voltage: 4.5V-5.5V
4	+V5.0_IN	PWR	Voltage: 4.5V-5.5V
5	+V5.0_IN	PWR	Voltage: 4.5V-5.5V
6	+V5.0_IN	PWR	Voltage: 4.5V-5.5V
7	GND_IN	PWR	
8	GND_IN	PWR	
9	GND_IN	PWR	
10	GND_IN	PWR	

Table 4: Power Connector Pin Layout

4 Interfaces

4.1 USB Host

There are 4 USB Host Ports available on the armStoneMX8M. Two of them are on the stacked USB Type-A Connector (USB3.0), one is for internal usage on 4 pins with a pitch of 2.54mm (USB2.0) and the last one, on the MiniPCI Express connector (USB2.0). All 4 ports are provided by an USB3.0 HUB, which is connected to USB2 of the i.MX8M

The USB signals are routed as 90 Ohm differential pairs. ESD and EMV protection is included in PCB design.

J6 Pin	Signal	I/O	Voltage	Description
1	USB_H1_PWR	0	5,0V	Output voltage, switched by USB Switch
2	USB_H1_DN	I/O		90 Ohm differential pair
3	USB_H1_DP	I/O		
4	GND	0		
5	USB_H1_RXN	I		90 Ohm differential pair
6	USB_H1_RXP	I		
7	GND			
8	USB_H1_TXN	0		90 Ohm differential pair
9	USB_H1_TXP	0		
10	USB_H2_PWR	0	5,0V	Output voltage, switched by USB Switch
11	USB_H2_DN	I/O		90 Ohm differential pair
12	USB_H2_DP	I/O		
13	GND	0		
14	USB_H2_RXN	I		90 Ohm differential pair
15	USB_H2_RXP	T		
16	GND			
17	USB_H2_TXN	0		90 Ohm differential pair
18	USB_H2_TXP	0		

Table 5: USB Host Interface (Type-A Connector)

J7 Pin	Signal	I/O	Voltage	Description
1	USB_H3_PWR	0	5,0V	Output voltage, secured by an 1.1A Fuse
2	USB_H3_DN	I/O		90 Ohm differential pair
3	USB_H3_DP	I/O		
4	GND	0		

Table 6: USB Host Interface (Internal Connector)

4.2 USB OTG

The USB OTG Port is realised on a USB Type-C connector with USB3.1 functionality.

The USB signals are routed as 90 Ohm differential pairs. ESD and EMV protection is included in PCB design.

J6 Pin	Signal	I/O	Voltage	Description
A1 B1	GND	PWR		
A2 B2	USB1_TXP	0		90 Ohm differential pair
A3 B3	USB1_TXN	0		
A4 B4	USB1_VBUS	PWR	5V	Input in device mode and output in host mode
A5	USB1_CC1	I		
B5	USB1_CC2	I		
A6 B6	USB1_DP	I/O		90 Ohm differential pair
A7 B7	USB1_DN	I/O		
A 8	USB1_SBU1			Not connected
B8	USB1_SBU2			Not connected
A9 B9	USB1_VBUS	PWR		Input in device mode and output in host mode, Shared with A4, B4
A10 B10	USB1_RXN	I		90 Ohm differential pair
A11 B11	USB1_RXP	I		
A12 B12	GND	PWR		

Table 7: USB Host Interface (Type-A Connector)

4.3 Micro SD / Micro SIM card

To access a Micro SD and Micro SIM card there is a dual holder on the armStone.

The SD Card signals are shared with the Wifi module. If Wifi is mounted SD2 is not available. Connector type: Molex: 1046421610

J9 Pin	Signal	CPU Pad	I/O	Voltage	Description
C1	UIM_VDD	Connected to J8 Pin 8		UIM_VDD	
C2	UIM_RST	Connected to J8 Pin 14		UIM_VDD	
C3	UIM_CLK	Connected to J8 Pin 12		UIM_VDD	
C4	GND				
C5	UIM_VPP	Connected to J8 Pin 16		UIM_VDD	
C6	UIM_I/O	Connected to J8 Pin 10		UIM_VDD	
T1	SD2_DATA2				*
T2	SD2_DATA3				*
Т3	SD2_CMD				* 10k Pull-Up
T4	VDD_SD2			1.8V / 3.3V	* Enabled if SD is insert; Can be changed by SD2_VSELECT
T5	SD2_CLK				*
Т6	GND				
T7	SD2_DATA0				*
Т8	SD2_DATA1				*
SW	SD2_CDn				Inverted with MOSFET; 10k Pull- Up

Table 8: SD Card Interface A

* not available if Wifi is mounted

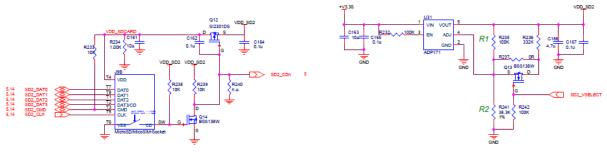


Figure 4: SDHC full feature example

4.4 Feature Connector

The SBC supports an I2C interface as I2C master. Devices on baseboard with other voltage need a level shifter. It's the preferred I2C for touch controller.

J14 Pin	\sim	CPU Pad	I/O	Voltage	Description
1	VCC3.3	-	PWR		
2	VCC5	-	PWR		
3	XGPIO0 / COL0	SAI1_MCLK		3.3V	4.7k Ω Pull Up
4	XGPIO1 / COL1	SAI1_TXD3 / ECSPI1_SCLK		3.3V	4.7k Ω Pull Up
5	XGPIO2 / COL2	SAI1_TXFS		3.3V	4.7k Ω Pull Up
6	XGPIO3 / COL3	SAI1_TXD4 / ECSPI1_SS0		3.3V	4.7k Ω Pull Up
7	XGPIO4 / COL4	SAI1_TXC		3.3V	4.7k Ω Pull Up
8	XGPIO5 / COL5	SAI1_TXD5 / ECSPI1_MOSI		3.3V	4.7k Ω Pull Up
9	XGPIO6 / COL6	SAI1_TXD0		3.3V	4.7k Ω Pull Up
1 0	XGPIO7 / COL7	SAI1_TXD6 / ECSPI1_MISO		3.3V	4.7k Ω Pull Up
1 1	GND	-	PWR		
1 2	XGPIO8 / I2C4_DAT	I2C4_SDA		3.3V	4.7k Ω Pull Up
1 3	XGPIO9 / TXD3	UART3_TXD / SAI1_RXD6		3.3V	- / 4.7k Ω Pull Up for SAI1_RXD6
1 4	XGPIO10 / I2C4_SCL	I2C4_SCL		3.3V	4.7k Ω Pull Up
1 5	XGPIO11 / RXD3	UART3_RXD / SAI1_RXD7		3.3V	100k Ω Pull Up / 4.7k Ω Pull Up for SAI1_RXD7
1 6	XGPIO12 / I2CLK / I2C4_IRQ	SAI3_RXC / ECSPI2_MISO*		3.3V	4.7k Ω Pull Up for SAI3_RXC
1 7	XGPIO13 / I2C4_RST / CTS4	SAI3_RXD / ECSPI2_SS0*		3.3V	4.7k Ω Pull Up for SAI3_RXD
1 8	XGPIO14 / ROW0 / TXD1	UART1_TXD		3.3V	
1 9	XGPIO15 / ROW1	SAI1_TXD2		3.3V	4.7k Ω Pull Up
2 0	XGPIO16 / ROW2 / RXD1	UART1_RXD		3.3V	100k Ω Pull Up
2 1	XGPIO17 / ROW3	SAI1_RXFS		3.3V	4.7k Ω Pull Up
2 2	XGPIO18 / ROW4	SAI1_RXC		3.3V	4.7k Ω Pull Up
2 3	XGPIO19 / ROW5	SAI1_RXD0		3.3V	4.7k Ω Pull Up

For more chip selects, interrupts and other signals use GPIOs and modify the driver.

2 4	XGPIO29 / ROW6	SAI1_RXD1		3.3V	4.7k Ω Pull Up
25	XGPIO21 / ROW7	SAI1_RXD2		3.3V	4.7k Ω Pull Up
2 6	GPIO1	SAI1_TXD1		3.3V	4.7k Ω Pull Up
2 7	GND	-	PWR		
2 8	XGPIO22 / PWMOUT0	SPDIF_EXT_CLK		3.3V	4.7k Ω Pull Up
2 9	XGPIO23 / I2C3_SDA / ADC_IN0	- / I2C3_SDA		3.3V	ADC from ADS1015 / 4.7k Ω Pull Up for I2C3 SDA
3 0	XGPIO24 / PWMOUT1	SPDIF_RX		3.3V	4.7k $\overline{\Omega}$ Pull Up
3 1	XGPIO25 / I2C3_SCL / ADC_IN1	- / I2C3_SCL		3.3V	ADC from ADS1015 / 4.7k Ω Pull Up for I2C3_SCL
3 2	XGPIO26 / PWMOUT2	SPDIF_TX		3.3V	4.7k $\overline{\Omega}$ Pull Up
3 3	XGPIO27 / I2C3_IRQ / ADC_IN2	- / SAI3_TXD		3.3V	ADC from ADS1015/ 4.7k Ω Pull Up for SAI3_TXD
3 4	Backlight On	SAI1_RXD5		3.3V	4.7k Ω Pull Down
3 5	XGPIO28 / I2C3_RST / ADC_IN3	-/SAI3_RXFS		3.3V	ADC from ADS1015/ 4.7k Ω Pull Up for SAI3_RXFS
3 6	XGPIO29 / RXD4	ECSPI2_SCLK*		3.3V	100k Ω Pull Up
3 7	GND	-	PWR		
3 8	XGPIO30 / TXD4	ECSPI2_MOSI*		3.3V	
3 9	VCC3.3	-	PWR		
4 0	VCC5	-	PWR		
4 1	MIC1 (Audio pin 1)	-			From SGTL5000
4 2	GND	-	PWR		
4 3	Not connected	-	-		
4	LINEIN_R	-			From SGTL5000
4 5	LINEOUT_R	-			From SGTL5000
4 6	GND	-	PWR		
4 7	GND	-	PWR		

4 8	LINEIN_L	-		From SGTL5000
4 9	LINEOUT_L	-		From SGTL5000
5 0	GND	-	PWR	
5 1	RESETBTN	-		Leave open if not used
5 2	VCC3.3	-	PWR	
5 3	PWRBTN	ONOFF		Leave open if not used
5 4	Not connected	-	-	
5 5	RXD2 (RS232)	-		From UART2_RXD via SP3243
5 6	RTS2 (RS232)	-		From UART4_RXD via SP3243
5 7	TXD2 (RS232)	-		From UART2_TXD via SP3243
5 8	CTS2 (RS232)	-		From UART4_TXD via SP3243
5 9	Not connected	-	-	
6 0	Not connected	-	-	
6 1	GND	-	PWR	
6 2	VCC5 (COM keypin)	-	PWR	
6 3	CAN1RX / CAN1L	-		From MCP2515 optional with CAN transceiver
6 4	CAN1TX / CAN1H	-		From MCP2515 optional with CAN transceiver
6 5	BOOTSEL	-		
6 6	BOOTSEL	-		

Table 9: Feature Connector

*Only Available if WLAN is not mounted

4.5 Ethernet Interface

The board supports one 10/100/1000 Mbit LAN interfaces. A 10/100/1000 Gigabit PHY Qualcomm AR8035 is mounted on the board.

J3 Pin	Signal	Function	I/O	Voltage	Description
1	GND via 100nF				
2	ETH_A_D1_P		I/O		Gbit Differential data
3	ETH_A_D1_N		I/O		line
4	ETH_A_D2_P		I/O		Gbit Differential data
5	ETH_A_D2_N		I/O		line
6	ETH_A_D3_P		I/O		Gbit Differential data
7	ETH_A_D3_N		I/O		line
8	ETH_A_D4_P		I/O		Gbit Differential data
9	ETH_A_D4_N		I/O		line
10	GND		PWR		
11	3.3V via 300Ω		PWR		
12	LINKLED10_100 & LINKLED_1000		0		Link LED
13	3.3V via 300Ω		PWR		
14	ACTLED		0		Activity LED

Table 10 Ethernet Interface

4.6 PCIE Interface

The board supports one channel PCI Express.

J8 Pin	Signal	I/O	Voltage	Description
1	mPCIE_WAKE	0		
2	3.3V	PWR		
3	Not connected			
4	GND	PWR		
5	Not connected			
6	1.5V	PWR		
7	mPCIE_CLKREQ	0		
8	UIM_PWR	PWR		Connected to J8
9	GND	PWR		
10	UIM_DATA	I/O		Connected to J8
11	mPCIE_CLK_N	I/O		
12	UIM_CLK	0		Connected to J8
13	mPCIE_CLK_P	I/O		
14	UIM_RESET	0		Connected to J8
15	GND	PWR		
16	UIM_VPP	PWR		Connected to J8
17	Not connected			
18	GND	PWR		
19	Not connected			
20	mPCIE_DIS	0		
21	GND	PWR		
22	mPCIE_PERST	0		
23	mPCIE_CRX_N	0		
24	3.3V	PWR		
25	mPCIE_CRX_P	0		
26	GND	PWR		
27	GND	PWR		
28	1.5V	PWR		
29	GND	PWR		
30	I2C_SCL	0		Connected to I2C1_SCL
31	mPCIE_CTX_N			
32	I2C_SDA	I/O		Connected to I2C1_SDA
33	mPCIE_CTX_P			
34	GND	PWR		
35	GND	PWR		
36	USB_D-	I/O		USB4 from USB Hub
37	GND	PWR		
38	USB_D+			USB4 from USB Hub
39	3.3V	PWR		

40	GND	PWR	
41	3.3V	PWR	
42	LED D10		Connected to cathode of D10
43	GND	PWR	
44	LED D12		Connected to cathode of D12
45	Not connected		
46	LED D11		Connected to cathode of D11
47	Not connected		
48	1.5V	PWR	
49	Not connected		
50	GND	PWR	
51	Not connected		
52	3.3V	PWR	

Table 11: PCIE Interface

4.7 HDMI Interface

The SBC provides an HDMI / DVI interface with up to 4k resolution. All signals are ESD and EMI protected.

J2 Pin	Signal	I/O	Voltage	Description
1	HDMI_D2+	I/O		
2	GND	PWR		
3	HDMI_D2-	I/O		
4	HDMI_D1+	I/O		
5	GND	PWR		
6	HDMI_D1-	I/O		
7	HDMI_D0+	I/O		
8	GND	PWR		
9	HDMI_D0-	I/O		
10	HDMI_CLK+	I/O		
11	GND	PWR		
12	HDMI_CLK-	I/O		
13	HDMI_CEC	T	5.0V	
14	Not connected			
15	HDMI_I2C_CLK	0	5.0V	
16	HDMI_I2C_DATA	I/O	5.0V	
17	GND	PWR		
18	5.0V	PWR		
19	Hot Plug Detection	I	5.0V	

Table 12: HDMI Interface

4.8 LVDS Interface

The SBC provides two LVDS interfaces with 4 lanes each and a maximum resolution of 1920 x 1200. The LVDS signals are generated by a DSI to LVDS Bridge.

Connector type: ES&S STE-FI-X30S-HF-NPB-TW

J10 Pin	Signal	I/O	Voltage	Description
1	LVDS_A_D0-	0		
2	LVDS_A_D0+	0		
3	LVDS_A_D1-	0		
4	LVDS_A_D1+	0		
5	LVDS_A_D2-	0		
6	LVDS_A_D2+	0		
7	GND	PWR		
8	LVDS_A_CLK-	0		
9	LVDS_A_CLK+	0		
10	LVDS_A_D3-	0		
11		0		
12	LVDS_B_D0-	0		
13	LVDS_B_D0+	0		
14		PWR		
15	LVDS_B_D1-	0		
16		0		
17		PWR		
18		0		
19	LVDS_B_D2+	0		
20	LVDS_B_CLK-	0		
21	LVDS_B_CLK+	0		
22 23	LVDS_B_D3- LVDS B D3+	0		
23	GND	PWR		
24	I2C_SDA	I/O	3,3V	Connect to I2C2 SDA with 4.7k Ω Pull
20	120_00/1	1/0	0,01	
26	I2C_IRQ / VLCDON	I/O	3,3V	Connect to SAI3_MCLK
27	I2C_SCL	0	3,3V	Connect to I2C2_SCL with 4.7k Ω Pull Up
28	VLCD	PWR		3,3V or 5V Output switched by VLCDON
29	VLCD	PWR		
30	VLCD	PWR		

Table 13: LVDS Interface

4.9 Touch Interface

To connect a capacitive Touchpanel via $I^2C,$ the SBC offers the I^2C Signals on a 6-pin connector.

Connector type: Hirose DF13-6P-1.25H

J13 Pin	Signal	CPU Pad	I/O	Voltage	Description
1	3.3V		PWR		Maximal 50mA Output
2	I2C_SDA	I2C2_SDA	I/O	3.3V	4.7k Ω Pull Up
3	I2C_SCL	I2C2_SCL	0	3.3V	4.7k Ω Pull Up
4	I2C_RST	SAI3_TXC	0	3.3V	4.7k Ω Pull Up
5	I2C_IRQ	SAI3_XTFS	I	3.3V	4.7k Ω Pull Up
6	GND		PWR		

Table 14: Touch Interface

4.10 Backlight Interface

To control the LCD voltage and Backlight, the SBC offers a 4-pin connector with the control pins.

Connector type: Hirose DF13-4P-1.25H

J11 Pin	Signal	CPU Pad	I/O	Voltage	Description
1	VLCD_ON	SAI5_RXD2	0	3.3V	Display on/off 4.7k Ω Pull Down
2	BL_ON	SAI1_RXD5	0	3.3V	Backlight on/off 4.7k Ω Pull Down
3	BL_PWM	SAI5_RXD1	0	3.3V	Backlight Brightness
4	GND		PWR		

Table 15: Backlight Interface

4.10.1 Solution with a single cable with 3 connectors

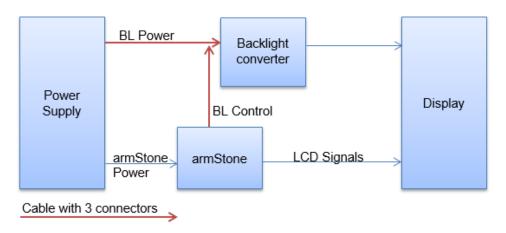


Figure 4: backlight connection with single cable

4.10.2 Solution with 2 cable with 2 connectors each

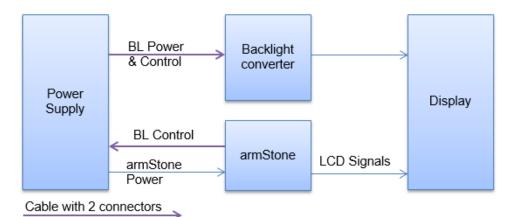
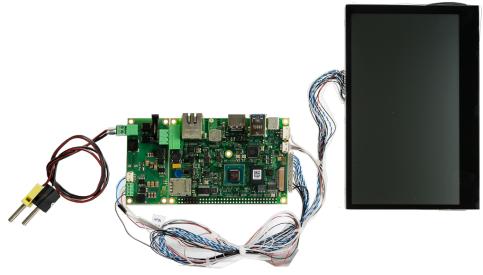
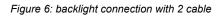




Figure 5: backlight connection with 2 cable

4.11 MIPI CSI Interface

The board supports dual lane MIPI CSI interface.

J4 Pin	Signal	I/O	Voltage	Description
1	GND	PWR		
2	CSI_DATA0_N	I		
3	CSI_DATA0_P	I		
4	GND	PWR		
5	CSI_DATA1_N	I		
6	CSI_DATA1_P	I		
7	GND	PWR		
8	CSI_CLK_N	I		
9	CSI_CLK_P	I		
10	GND	PWR		
11	CAM_PWDN	0	3.3V	Connect to Pad GPIO1_IO10
12	CAM_MCLK	0	3.3V	Generate via 24MHz Oszilator or CPU Pad GPIO1_IO01
13	I2C_SCL	0	3.3V	Connect to I2C1_SCL
14	I2C_SDA	I/O	3.3V	Connect to I2C1_SDA
15	3.3V	PWR		

Table 16: MIPI CSI Interface

4.12 WLAN and Bluetooth Interface (optional)

The armStone™MX8M contains a certified high performance WLAN and Bluetooth module.

The module is based on Cypress's BCM43353 chip.

The module offers:

- IEEE802.11 a/b/g/n/ac
- Bluetooth 2.1+EDR, Bluetooth 3.0 and Bluetooth 4.2
- The module is certified for the following regions: FCC (USA), IC (Canada), ETSI (Europe), Giteki (Japan), and RCM (AU/NZ)
- BT SIG QDID: 97564

Note: In case WLAN/BT module is mounted UART4 and the external SD card connector are not avilable

4.13 GPIO

GPIOs are free programmable. All GPIOs can trigger an interrupt. Pullups or pulldowns are configurable by software, but they are not available at board start-up. On a non-powered board it's not allowed to have a voltage on GPIO pins. Also a higher voltage as the announced IO power is not allowed.

4.14 JTAG

J1 Pin	Signal	CPU Pad	I/O	Voltage	Description
1	3.3V		PWR		
2	JTAG_TMS	JTAG_TMS		3,3V	10k Ω Pull Up
3	GND		PWR		
4	JTAG_TCK	JTAG_TCK		3,3V	10k Ω Pull Down
5	GND		PWR		
6	JTAG_TDO	JTAG_TDO		3,3V	
7	JTAG_nTRST	JTAG_TRST_B		3.3V	10k Ω Pull Up
8	JTAG_TDI	JTAG_TDI		3,3V	10k Ω Pull Up
9	GND		PWR		
10	JTAG_nSRST			3,3V	10k Ω Pull Up

Table 17: JTAG Interface

- For debug only
 Leave unconnected, if you don't use JTAG
 Don't put them in a JTAG chain, because different power sequence and power level could kill the CPU

4.15 Power and Power Control Pins

J15 Pin	J16 Pin	Signal	I/O	Description
3	3, 4, 5, 6	VIN (+V5S)	I	MainPowersupplyinputplease refer chapter 7ADP-NT24V2bADP-NT24V2bbTo power the armStoneA9 with 7,5-36V F&Sbprovide ADP-NT24V2:b
				The extension board is designed to plug it into the gover Connector of the armStone. For more information check the F&S website: https://www.fs-net.de/de/produkte/zubehoer/power-adapter-2/
4	7, 8,	GND	I	Electrical characteristic Main Power supply Ground input
2	9, 10 1, 2	VDD_VBAT		RTC battery input; tie to 3.0V please refer chapter 7 ADP-NT24V2 To power the armStoneA9 with 7,5-36V F&S provide ADP-NT24V2:
				The extension board is designed to plug it into the power Connector of the armStone. For more information check the F&S website:
				https://www.fs-net.de/de/produkte/zubehoer/power- adapter-2/

5	-	3.3V	0	20mA output from on board DCDC powered from
				VIIN

By using a battery for VBAT you have to follow regulation rules. Please check with your test laboratory. It's possible to use a supercap instead.

3.3V is the 3.3V power supply of the board generated form PMIC and powered from VIN. Use as enable for baseboard power regulators.

5 Flash

5.1 NAND Flash

By default, boot mode is configured for NAND boot.

The board implements the following to get reliable boot over long time:

- Use of SLC NAND flash memory
- Boot loader stored two times in flash memory
- Flash data protected by 32 bit ECC
- Algorithm for block refresh
- Operating system Linux uses UBI as file system
- Operating system Windows can use F3S or TFAT to be robust against power failures

5.2 eMMC

If mounted instead NAND an eMMC v4.41 or higher with 4GB or more is mounted from several manufacturer.

The eMMC Flash is based on multi-level cell (MLC) technology. This technology has limited erase cycles and data retention depends on temperature. It is important to know, that high temperature impacts data retention of SLC or MLC flash. Independent if the device is powered or not. Please contact us, if your device is constantly in an environment where temperature is higher than 50°C.

6 RTC

There is a NXP PCA8565 or compatible implemented on board. The accuracy is limited because the warming of the crystal on the board in operation. The RTC could drift some seconds per day.

7 ADP-NT24V2

To power the armStoneA9 with 7,5-36V F&S provide ADP-NT24V2:

The extension board is designed to plug it into the power Connector of the armStone. For more information check the F&S website: https://www.fs-net.de/de/produkte/zubehoer/power-adapter-2/

8 Electrical characteristic

8.1 Absolute maximum ratings

Description	Min	Max	Unit
Input Voltage range 3.3V IO pins	-0.3	OVDD*+0.3	V
Voltage on any IO with VIN off		0.3	V
USB VBUS	-0.3	5.6	V
Maximum power consumption VDD_VBAT at 85°C		0.6	μA
Maximum output current 3.3V		20	mA

Table 19: Absolute Maximum Ratings

8.2 DC Electrical Characteristics

Parameter	Description	Condition	Min	Мах	Unit
VIN	Baord main power		4.5	5.5	V
VBAT	RTC power		1.8	3.5	V
OVDD	On board 3.3V DCDC		3.15	3.45	V
V _{ih}	High Level Input Voltage		0.7*OVDD	OVDD	V

V _{il}	Low Level Input Voltage		0	0.3*OVDD	V
V _{oh}	High Level Output Voltage	I _{oh} =0.1mA	OVDD- 0,15		V
V _{ol}	Low Level Output Voltage	I _{ol} =0.1mA		0.15	V
lo	Output current IOs	3.3V		5	mA
I _{VBAT}	Current consumption VBAT			0.22	μA

Table 20: DC Electrical Characteristics

OVDD = power on pin 3.3V from on board DCDC

9 Thermal Specification

	Min	Тур	Мах	Unit
Operating temperature	0		+70 ¹	°C
Operating temperature ("I") ²	-20		+85 ¹	°C
Junction temperature i.MX8M	0		+95	°C
Junction temperature i.MX8M ("I") ²	-40		+105	°C

¹ Depending on cooling solution. See also: *Power consumption and cooling*

² Optional

10 Review service

F&S provide a schematic review service for your baseboard implementation. Please send your schematic as searchable PDF to support@fs-net.de.

11 ESD and EMI implementing on COM

Like all other SBC's at the market there is no ESD protection on any signal out from the SBC. ESD protection hast to place as near as possible to the ESD source - this is every connector with external access. A helpful guide is available from TI; just search for slva680 at ti.com.

To reduce EMI the board supports spread spectrum. This will normally reduce EMI between 9 and 12 dB and so this decrease your shielding requirements. We strictly recommend having your baseboard with controlled impedance and wires as short as possible.

12 Second source rules

F&S qualifies their second sources for parts autonomously, as long as this does not touch the technical characteristics of the product. This is necessary to guarantee delivery times and product life. A setup of release samples with released second sources is not possible.

F&S does not use broker components without the consent of the customer.

13 Power consumption and cooling

Depend you product version you will have different temperature range and power consumption of the board.

The operating temperature can be measured on the mounting holes on top of the board and **shouldn't exceed the maximum operating temperature of the board** (85°C).

The maximum power consumption of the board could be **t.b.d.** Watt. This value is with 100% working of cores and full working graphic engines. Calculating with this scenario does need an expensive cooling.

Depend your application and your worst case scenario the maximum power consumption is much lower. This will save money on your cooling solution. We recommend to measure this with your application. We see values between max. **t.b.d.** and **t.b.d.** Watt on different custom applications.

Because the different environments for air temperature, airflow, thermal radiation, power consumption of the board on your application and the power consumption of other components like power supply and LCD inside the system you have to calculate a working cooling solution for the board.

Just cooling the CPU with 70-90% of the power consumption of the entire board is the best way to cool the board.

To calculate your cooling we recommend this helpful literature and the CPU datasheet

- AN4579 from NXP: Thermal management guidelines
- fischerelektronik.de/web_fisch...eKataloge/Heatsinks/#/18/
- http://www.eetimes.com/document.asp?doc_id=1276748
- http://www.eetimes.com/document.asp?doc_id=1276750

14 Storage conditions

Maximum storage on room temperature with non-condensing humidity: 6 months Maximum storage on controlled conditions 25 ± 5 °C, max. 60% humidity: 12 months For longer storage we recommend vacuum dry packs.

15 ROHS and REACH statement

All F&S designs are created from lead-free components and are completely ROHS compliant.

The products we supply do not contain any substance on the latest candidate list published by the European Chemicals Agency according to Article 59(1,10) of Regulation (EC) 1907/2006 (REACH) in a concentration above 0.1 mass %.

Consequently, the obligations in No. 1 and 2 paragraphs in Annex are not relevant here. Please understand that F&S is not performing any chemical analysis on its products to testify REACH compliance and is therefore not able to fill out any detailed inquiry forms.

16 Packaging

All F&S ESD-sensitive products are shipped either in trays or bags. The boards are shipped in cartons. One carton can hold 30 boards.

17 Matrix Code Sticker

All F&S hardware is shipped with a matrix code sticker including the serial number. Enter your serial number here <u>https://www.fs-net.de/en/support/serial-number-info-and-rma/</u> to get information on shipping date and type of board.

Figure 5: Matrix Code Sticker

18 Appendix

Important Notice

The information in this publication has been carefully checked and is believed to be entirely accurate at the time of publication. F&S Elektronik Systeme ("F&S") assumes no responsibility, however, for possible errors or omissions, or for any consequences resulting from the use of the information contained in this documentation.

F&S reserves the right to make changes in its products or product specifications or product documentation with the intent to improve function or design at any time and without notice and is not required to update this documentation to reflect such changes.

F&S makes no warranty or guarantee regarding the suitability of its products for any particular purpose, nor does F&S assume any liability arising out of the documentation or use of any product and specifically disclaims any and all liability, including without limitation any consequential or incidental damages.

Specific testing of all parameters of each device is not necessarily performed unless required by law or regulation.

Products are not designed, intended, or authorized for use as components in systems intended for applications intended to support or sustain life, or for any other application in which the failure of the product from F&S could create a situation where personal injury or death may occur. Should the Buyer purchase or use a F&S product for any such unintended or unauthorized application, the Buyer shall indemnify and hold F&S and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, expenses, and reasonable attorney fees arising out of, either directly or indirectly, any claim of personal injury or death that may be associated with such unintended or unauthorized use, even if such claim alleges that F&S was negligent regarding the design or manufacture of said product.

Specifications are subject to change without notice.

Warranty Terms

Hardware Warranties

F&S guarantees hardware products against defects in workmanship and material for a period of one (1) year from the date of shipment. Your sole remedy and F&S's sole liability shall be for F&S, at its sole discretion, to either repair or replace the defective hardware product at no charge or to refund the purchase price. Shipment costs in both directions are the responsibility of the customer. This warranty is void if the hardware product has been altered or damaged by accident, misuse or abuse.

Software Warranties

Software is provided "AS IS". F&S makes no warranties, either express or implied, with regard to the software object code or software source code either or with respect to any third party materials or intellectual property obtained from third parties. F&S makes no warranty that the software is useable or fit for any particular purpose. This warranty replaces all other warranties written or unwritten. F&S expressly disclaims any such warranties. In no case shall F&S be liable for any consequential damages.

Disclaimer of Warranty

THIS WARRANTY IS MADE IN PLACE OF ANY OTHER WARRANTY, WHETHER EXPRESSED, OR IMPLIED, OF MERCHANTABILITY, FITNESS FOR A SPECIFIC PURPOSE, NON-INFRINGEMENT OR THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION, EXCEPT THE WARRANTY EXPRESSLY STATED HEREIN. THE REMEDIES SET FORTH HEREIN SHALL BE THE SOLE AND EXCLUSIVE REMEDIES OF ANY PURCHASER WITH RESPECT TO ANY DEFECTIVE PRODUCT.

Limitation on Liability

UNDER NO CIRCUMSTANCES SHALL F&S BE LIABLE FOR ANY LOSS, DAMAGE OR EXPENSE SUFFERED OR INCURRED WITH RESPECT TO ANY DEFECTIVE PRODUCT. IN NO EVENT SHALL F&S BE LIABLE FOR ANY INCIDENTAL OR CONSEQUENTIAL DAMAGES THAT YOU MAY SUFFER DIRECTLY OR INDIRECTLY FROM USE OF ANY PRODUCT. BY ORDERING THE PRODUCT, THE CUSTOMER APPROVES THAT THE F&S PRODUCT, HARDWARE AND SOFTWARE, WAS THOROUGHLY TESTED AND HAS MET THE CUSTOMER'S REQUIREMETS AND SPECIFICATIONS

19 Content

Table 1: Mechanical Dimensions	7
Table 2: Connectors Layout	8
Table 3: Power J15 Connector Pin Layout	9
Table 4: Power Connector Pin Layout	9
Table 5: USB Host Interface (Type-A Connector)	10
Table 6: USB Host Interface (Internal Connector)	
Table 7: USB Host Interface (Type-A Connector)	11
Table 8: SD Card Interface A	
Table 9: Feature Connector	15
Table 10 Ethernet Interface	16
Table 11: PCIE Interface	18
Table 12: HDMI Interface	19
Table 13: LVDS Interface	20
Table 14: Touch Interface	21
Table 15: Backlight Interface	21
Table 16: MIPI CSI Interface	23
Table 17: JTAG Interface	24
Table 18: Power and Power Control	26
Table 19: Absolute Maximum Ratings	28
Table 20: DC Electrical Characteristics	29
Figure 1: Block Diagram	5
Figure 2: Mechanical Dimension Top	
Figure 3: Mechanical Dimension Bottom	7
Figure 4: SDHC full feature example	
Figure 5: Matrix Code Sticker	

