

COM Express™ conga-TC175

7th Generation Intel® Core™ i7, i5, i3 and Celeron® Single Chip Ultra Low TDP Processors

User's Guide

Revision 0.1 (Preliminary)

Revision History

Revision	Date (yyyy.mm.dd)	Author	Changes
0.1	2017.02.10	AEM	Preliminary release

Preface

This user's guide provides information about the components, features, connectors and BIOS Setup menus available on the conga-TC175. It is one of three documents that should be referred to when designing a COM Express™ application. The other reference documents that should be used include the following:

COM Express[™] Design Guide COM Express[™] Specification

The links to these documents can be found on the congatec AG website at www.congatec.com

Disclaimer

The information contained within this user's guide, including but not limited to any product specification, is subject to change without notice.

congatec AG provides no warranty with regard to this user's guide or any other information contained herein and hereby expressly disclaims any implied warranties of merchantability or fitness for any particular purpose with regard to any of the foregoing. congatec AG assumes no liability for any damages incurred directly or indirectly from any technical or typographical errors or omissions contained herein or for discrepancies between the product and the user's guide. In no event shall congatec AG be liable for any incidental, consequential, special, or exemplary damages, whether based on tort, contract or otherwise, arising out of or in connection with this user's guide or any other information contained herein or the use thereof.

Intended Audience

This user's guide is intended for technically qualified personnel. It is not intended for general audiences.

Lead-Free Designs (RoHS)

All congatec AG designs are created from lead-free components and are completely RoHS compliant.

Electrostatic Sensitive Device

All congated AG products are electrostatic sensitive devices and are packaged accordingly. Do not open or handle a congated AG product except at an electrostatic-free workstation. Additionally, do not ship or store congated AG products near strong electrostatic, electromagnetic, magnetic, or radioactive fields unless the device is contained within its original manufacturer's packaging. Be aware that failure to comply with these guidelines will void the congated AG Limited Warranty.

Symbols

The following symbols are used in this user's guide:

Warning

Warnings indicate conditions that, if not observed, can cause personal injury.

Caution

Cautions warn the user about how to prevent damage to hardware or loss of data.

Notes call attention to important information that should be observed.

Copyright Notice

Copyright © 2017, congatec AG. All rights reserved. All text, pictures and graphics are protected by copyrights. No copying is permitted without written permission from congatec AG.

congatec AG has made every attempt to ensure that the information in this document is accurate yet the information contained within is supplied "as-is".

Trademarks

Product names, logos, brands, and other trademarks featured or referred to within this user's guide, or the congatec website, are the property of their respective trademark holders. These trademark holders are not affiliated with congatec AG, our products, or our website.

Warranty

congatec AG makes no representation, warranty or guaranty, express or implied regarding the products except its standard form of limited warranty ("Limited Warranty") per the terms and conditions of the congatec entity, which the product is delivered from. These terms and conditions can be downloaded from www.congatec.com. congatec AG may in its sole discretion modify its Limited Warranty at any time and from time to time.

The products may include software. Use of the software is subject to the terms and conditions set out in the respective owner's license agreements, which are available at www.congatec.com and/or upon request.

Beginning on the date of shipment to its direct customer and continuing for the published warranty period, congated AG represents that the products are new and warrants that each product failing to function properly under normal use, due to a defect in materials or workmanship or due to non conformance to the agreed upon specifications, will be repaired or exchanged, at congated's option and expense.

Customer will obtain a Return Material Authorization ("RMA") number from congatec AG prior to returning the non conforming product freight prepaid. congatec AG will pay for transporting the repaired or exchanged product to the customer.

Repaired, replaced or exchanged product will be warranted for the repair warranty period in effect as of the date the repaired, exchanged or replaced product is shipped by congatec, or the remainder of the original warranty, whichever is longer. This Limited Warranty extends to congatec's direct customer only and is not assignable or transferable.

Except as set forth in writing in the Limited Warranty, congatec makes no performance representations, warranties, or guarantees, either express or implied, oral or written, with respect to the products, including without limitation any implied warranty (a) of merchantability, (b) of fitness for a particular purpose, or (c) arising from course of performance, course of dealing, or usage of trade.

congatec AG shall in no event be liable to the end user for collateral or consequential damages of any kind. congatec shall not otherwise be liable for loss, damage or expense directly or indirectly arising from the use of the product or from any other cause. The sole and exclusive remedy against congatec, whether a claim sound in contract, warranty, tort or any other legal theory, shall be repair or replacement of the product only.

Certification

congatec AG is certified to DIN EN ISO 9001 standard.

Technical Support

congatec AG technicians and engineers are committed to providing the best possible technical support for our customers so that our products can be easily used and implemented. We request that you first visit our website at www.congatec.com for the latest documentation, utilities and drivers, which have been made available to assist you. If you still require assistance after visiting our website then contact our technical support department by email at support@congatec.com

Terminology

Term	Description
GB	Gigabyte
GHz	Gigahertz
kB	Kilobyte
MB	Megabyte
Mbit	Megabit
kHz	Kilohertz
MHz	Megahertz
TDP	Thermal Design Power
PCle	PCI Express
SATA	Serial ATA
PEG	PCI Express Graphics
PCH	Platform Controller Hub
eDP	Embedded DisplayPort
DDI	Digital Display Interface
HDA	High Definition Audio
N.C	Not connected
N.A	Not available
TBD	To be determined

Contents

1	Introduction	10	5.2	Secondary Connector Rows C and D	
2	Specifications	12	5.2.1 5.2.2	PCI Express [™] PCI Express Graphics (PEG)	29
	·		5.2.2		
2.1	Feature List			Digital Display Interface	
2.2	Supported Operating Systems		5.2.3.1	HDMI	
2.3	Mechanical Dimensions		5.2.3.2	DVI	
2.4	Supply Voltage Standard Power		5.2.3.3	DisplayPort (DP)	
2.4.1	Electrical Characteristics	14	5.2.4	USB 3.0	31
2.4.2	Rise Time	14	6	Additional Features	32
2.5	Power Consumption	15	/ 1	, D C / DC)	22
2.6	Supply Voltage Battery Power	16	6.1	congatec Board Controller (cBC)	
2.7	Environmental Specifications		6.2	Board Information	
3	Block Diagram	10	6.3	Watchdog	
3	Block Diagram	10	6.4	I ² C Bus	
4	Cooling Solutions	10	6.5	Power Loss Control	
4			6.6	OEM BIOS Customization	
4.1	CSP Dimensions		6.6.1	OEM Default Settings	
4.2	Heatspreader	20	6.6.2	OEM Boot Logo	
5	Connector Rows	22	6.6.3	OEM POST Logo	
			6.6.4	OEM BIOS Code/Data	
5.1	Primary Connector Rows A and B	22	6.6.5	OEM DXE Driver	
5.1.1	Serial ATA™ (SATA)		6.7	congatec Battery Management Interface	34
5.1.2	USB 2.0	22	6.8	API Support (CGOS)	
5.1.3	High Definition Audio (HDA) Interface	22	6.9	Security Features	35
5.1.4	Gigabit Ethernet	23	6.10	Suspend to Ram	35
5.1.5	LPC Bus	23	7	conga Tech Notes	34
5.1.6	I ² C Bus Fast Mode	23		-	
5.1.7	PCI Express TM	23	7.1	Intel® PCH-LP Features	
5.1.8	ExpressCard TM	23	7.1.1	Intel® Rapid Storage Technology	36
5.1.9	VĠA		7.1.1.1	AHCI	36
5.1.10	LVDS/eDP		7.1.1.2	RAID	36
5.1.11	General Purpose Serial Interface		7.1.1.3	Intel® Smart Response Technology	36
5.1.12	GPIOs		7.2	Intel® Processor Features	
5.1.13	Power Control		7.2.1	Intel® Turbo Boost Technology	37
5.1.14	Power Management		7.2.2	Adaptive Thermal Monitor and Catastrophic Thermal Prot	

	37	20
.2.3 .2.4	Processor Performance ControlIntel® 64 Architecture	39
.2.5 .2.6	Intel® Virtualization Technology Thermal Management	
.3 .4	ACPI Suspend Modes and Resume Events DDR4 Memory	41
}	Signal Descriptions and Pinout Tables	42
3.1 3.2 3.3 3.4 3.5	A-B Connector Signal Descriptions A-B Connector Pinout C-D Connector Signal Descriptions C-D Connector Pinout Boot Strap Signals	52 54 63
)	System Resources	66
2.1 2.1.1 2.2 2.3 2.4	I/O Address Assignment LPC Bus PCI Configuration Space Map I ² C SM Bus	66 67
0	BIOS Setup Description	69
1	Additional BIOS Features	70
2	Industry Specifications	71

List of Tables

Table 1	COM Express™ 2.1 Pinout Types	10
Table 2	conga-TC175 Variants	11
Table 3	Feature Summary	
Table 4	Measurement Description	15
Table 5	Power Consumption Values	
Table 6	CMOS Battery Power Consumption	
Table 7	Display Combination (U-processor line)	
Table 8	Wake Events	
Table 9	Terminology Descriptions	42
Table 10	Intel® High Definition Audio Link Signals Descriptions	
Table 11	Gigabit Ethernet Signal Descriptions	
Table 12	SATA Signal Descriptions	
Table 13	PCI Express Signal Descriptions (general purpose)	
Table 14	ExpressCard Support Pins Signal Descriptions	
Table 15	LPC Signal Descriptions	
Table 16	USB Signal Descriptions	46
Table 17	CRT Signal Descriptions	
Table 18	LVDS Signal Descriptions	
Table 19	Embedded DisplayPort Signal Descriptions	
Table 20	SPI BIOS Flash Interface Signal Descriptions	
Table 21	Miscellaneous Signal Descriptions	
Table 22	General Purpose I/O Signal Descriptions	
Table 23	Power and System Management Signal Descriptions	
Table 24	General Purpose Serial Interface Signal Descriptions	
Table 25	Power and GND Signal Descriptions	
Table 26	Connector A-B Pinout	
Table 27	PCI Express Signal Descriptions (general purpose)	54
Table 28	USB 3.0 Signal Descriptions	54
Table 29	PCI Express Signal Descriptions (x16 Graphics)	55
Table 30	DDI Signal Description	
Table 31	HDMI Signal Descriptions	
Table 32	DisplayPort (DP) Signal Descriptions	
Table 33	Module Type Definition Signal Description	
Table 34	Power and GND Signal Descriptions	62

Table 35	Connector C-D Pinout	63
	Boot Strap Signal Descriptions	
	References	

1 Introduction

COM Express™ Concept

COM ExpressTM is an open industry standard defined specifically for COMs (computer on modules). Its creation makes it possible to smoothly transition from legacy interfaces to the newest technologies available today. COM ExpressTM modules are available in following form factors:

Mini 84mm x 55mm
 Compact 95mm x 95mm
 Basic 125mm x 95mm
 Extended 155mm x110mm

Table 1 COM Express™ 2.1 Pinout Types

Types	Connector Rows	PCIe Lanes	PCI	IDE	SATA Ports	LAN ports	USB 2.0/ USB 3.0	Display Interfaces
Type 1	A-B	Up to 6		-	4	1	8/0	VGA, LVDS
Type 2	A-B C-D	Up to 22	32 bit	1	4	1	8/0	VGA, LVDS, PEG/SDVO
Type 3	A-B C-D	Up to 22	32 bit	-	4	3	8/0	VGA,LVDS, PEG/SDVO
Type 4	A-B C-D	Up to 32		1	4	1	8/0	VGA,LVDS, PEG/SDVO
Type 5	A-B C-D	Up to 32		-	4	3	8/0	VGA,LVDS, PEG/SDVO
Type 6	A-B C-D	Up to 24		-	4	1	8 / 4*	VGA,LVDS/eDP, PEG, 3x DDI
Type 10	A-B	Up to 4		-	2	1	8/0	LVDS/eDP, 1xDDI

^{*} The SuperSpeed USB ports (USB 3.0) are not in addition to the USB 2.0 ports. Up to 4 of the USB 2.0 ports can support SuperSpeed USB.

The conga-TC175 modules use the Type 6 pinout definition and comply with COM Express 2.1 specification. They are equipped with two high performance connectors that ensure stable data throughput.

The COM (computer on module) integrates all the core components and is mounted onto an application specific carrier board. COM modules are legacy-free design (no Super I/O, PS/2 keyboard and mouse) and provide most of the functional requirements for any application. These functions include, but are not limited to a rich complement of contemporary high bandwidth serial interfaces such as PCI Express, Serial ATA, USB 2.0, and Gigabit Ethernet. The Type 6 pinout provides the ability to offer PCI Express, Serial ATA, and LPC options thereby expanding the range of potential peripherals. The robust thermal and mechanical concept, combined with extended power-management capabilities, is perfectly suited for all applications.

Carrier board designers can use as little or as many of the I/O interfaces as deemed necessary. The carrier board can therefore provide all the interface connectors required to attach the system to the application specific peripherals. This versatility allows the designer to create a dense and optimized package, which results in a more reliable product while simplifying system integration. Most importantly, COM Express™

modules are scalable, which means once an application has been created there is the ability to diversify the product range through the use of different performance class or form factor size modules. Simply unplug one module and replace it with another; no redesign is necessary.

conga-TC175 Options Information

The conga-TC175 is currently available in four variants. The table below shows the different configurations available. Check for the Part No. that applies to your product. This will tell you what options described in this user's guide are available on your particular module.

Table 2 conga-TC175 Variants

Part-No.	045250	045251	045252	045253
Processor	Intel® Core™ i7-7600U	Intel® Core™ i5-7300U	Intel® Core™ i3-7100U	Intel® Celeron® 3965U
	2.8 GHz Dual Core™	2.6 GHz Dual Core™	2.4 GHz Dual Core™	2.2 GHz Dual Core
Intel® Smart Cache	4 MByte	3 MByte	3 MByte	2 MByte
Max. Turbo Frequency	3.9 GHz	3.5 GHz	N.A	N.A
Processor Graphics	Intel® HD Graphics 620	Intel® HD Graphics 620	Intel® HD Graphics 620	Intel® HD Graphics 610
	(GT2)	(GT2)	(GT2)	(GT1)
Graphics Max. Dynamic Freq	1.15 GHz	1.1 GHz	1.0 GHz	0.9 GHz
Memory (DDR4)	2133 MT/s dual channel			
LVDS	Yes	Yes	Yes	Yes
DisplayPort (DP)	Yes	Yes	Yes	Yes
HDMI	Yes	Yes	Yes	Yes
Processor TDP (cTDP)	15 (7.5) W	15 (7.5) W	15 (7.5) W	15 (10) W

2 Specifications

2.1 Feature List

Table 3 Feature Summary

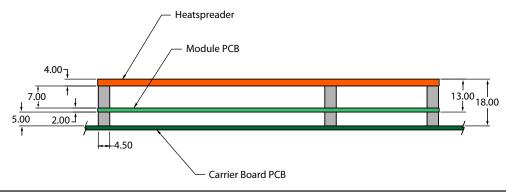
Form Factor	Based on COM Express™ standard pinout Type 6 Rev. 2.1 (Cor	npact size 95 x 95 mm)				
Processor	7 th Generation Intel® Core™ i7,i5, i3 Single Chip Ultra Low TDP	Processors				
Memory	Two memory sockets (located on the top and bottom side of the conga-TC175). Supports - SO-DIMM non-ECC DDR4 modules - Data rates up to 2133 MT/s - Maximum 32 GB capacity (16 GB each)					
congatec Board Controller	Multi-stage watchdog, non-volatile user data storage, manufac Power loss control	turing and board information, board statistics, hardware monitoring, fan control, I2C bus,				
Chipset	Intel® 100 Series PCH-LP integrated in the Multi-Chip Package					
Audio	High Definition Audio interface with support for multiple coded	:s				
Ethernet	Gigabit Ethernet (Intel® i219-LM controller) with support for AM	IT 11				
Graphics Options	Next Generation Intel® HD (610/620). Supports: - API (DirectX 12, OpenGL 5.0, OpenCL 2.1) - Intel® QuickSync & Clear Video Technology HD (hardwa - Switchable/Hybrid graphics - Up to 3 independent displays (must be two DDI's (DP, H 1x LVDS Up to 2x DDIs with support for: - 2x DisplayPort++ (DisplayPort 1.2) - 2x HDMI 1.4a*1 or HDMI 2.0 *1*2 - 2x DVI port *1 - Resolutions up to 4K	re accelerated video decode/encode/processing/transcode) DMI/DVI) and one eDP/LVDS) Optional Interface (assembly options): - 1x eDP 1.4 - 1x VGA *3 NOTE: *1 Requires an external level shifter on the carrier board. *2 Requires a Level Shifter Protocol Converter (LSPCON) on the carrier board. *3 Display combination with this option is 1x DDI, 1x VGA and 1x LVDS/eDP				
Peripheral Interfaces	USB Interfaces: - Up to 8x USB 2.0 - Up to 4x USB 3.0 Buses - LPC - I ² C (fast mode, multi-master) - SMB - SPI 3x SATA® (6Gb/s with RAID 0/1/5 support)	Up to 8x PCI Express® Gen. 3 lanes *1*3 2x UART GPIOs Optional PEG port (x1 or x2) *2 NOTE: *1 Intel Chipset supports only 6 PCIe devices at any time. *2 Requires re-routing of PCIe lanes 5 or 6 or both (assembly option) *3 Seven PCIe lanes if x1 PEG port is implemented or 6 PCIe lanes if x2 PEG port is implemented.				
BIOS	AMI Aptio® UEFI 5.x firmware, 8 or 16 MByte serial SPI with cor					
Storage	Optional eMMC 5.0 onboard flash	<u> </u>				

Management	ACPI 4.0 compliant with battery support. Also supports Suspend to RAM (S3) and Intel AMT 10. Configurable TDP Ultra low standby power consumption, Deep Sx.
Security	Optional discrete Trusted Platform Module "TPM 1.2/2.0"; new AES Instructions for faster and better encryption.

Some of the features mentioned above are optional. Check the part number of your module and compare it to the Options Information list on page 11 to determine what options are available on your particular module.

2.2 Supported Operating Systems

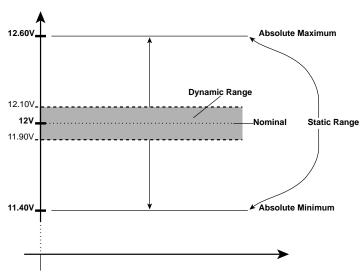
The conga-TC175 supports the following operating systems.


- Microsoft® Windows® 10
- WindRiver® VxWorks® (VX7 or later)
- Linux

The Intel® Kaby Lake SoC supports only 64-bit operating systems.

2.3 Mechanical Dimensions

- 95.0 mm x 95.0 mm
- Height approximately 18 or 21 mm (including heatspreader) depending on the carrier board connector that is used. If the 5 mm (height) carrier board connector is used, then approximate overall height is 18 mm. If the 8 mm (height) carrier board connector is used, then approximate overall height is 21 mm.



2.4 Supply Voltage Standard Power

• 12 V DC ± 5 %

The dynamic range shall not exceed the static range.

2.4.1 Electrical Characteristics

Power supply pins on the module's connectors limit the amount of input power. The following table provides an overview of the limitations for pinout Type 6 (dual connector, 440 pins).

Power Rail	Module Pin Current Capability (Amps)	Nominal Input (Volts)	Input Range (Volts)	Derated Input (Volts)	ļ .	l I	Conversion	Max. Load Power (Watts)
	(Amps)		(40163)		(mV)	(Watts)	Lincicity	(vvacts)
VCC_12V	12	12	11.4-12.6	11.4	+/- 100	137	85%	116
VCC_5V-SBY	2	5	4.75-5.25	4.75	+/- 50	9		
VCC_RTC	0.5	3	2.0-3.3		+/- 20			

2.4.2 Rise Time

The input voltages shall rise from 10 percent of nominal to 90 percent of nominal at a minimum slope of 250 V/s. The smooth turn-on requires that, during the 10 percent to 90 percent portion of the rise time, the slope of the turn-on waveform must be positive.

2.5 Power Consumption

The power consumption values were measured with the following setup:

- conga-TC175 COM
- Modified congatec carrier board
- conga-TC175 cooling solution
- Microsoft Windows 10 (64 bit)

The CPU was stressed to its maximum workload with the Intel® Thermal Analysis Tool

Table 4 Measurement Description

The power consumption values were recorded during the following system states:

System State	Description	Comment
S0: Minimum value	Lowest frequency mode (LFM) with minimum core voltage during desktop idle.	The CPU was stressed to its maximum frequency.
S0: Maximum value	Highest frequency mode (HFM/Turbo Boost).	The CPU was stressed to its maximum frequency.
S0: Peak current	Highest current spike during the measurement of "S0: Maximum value". This state shows the peak value during runtime.	Consider this value when designing the system's power supply to ensure that sufficient power is supplied during worst case scenarios.
S3	COM is powered by VCC_5V_SBY.	
S5	COM is powered by VCC_5V_SBY.	

- 1. The fan and SATA drives were powered externally.
- 2. All other peripherals except the LCD monitor were disconnected before measurement.

Table 5 Power Consumption Values

The tables below provide additional information about the power consumption data for each of the conga-TC175 variants offered. The values are recorded at various operating mode.

Part	Memory	H.W	BIOS	OS (64 bit)	CPU			Power Consumption (W)						
No.	Size	Rev.	Rev.		Variant	Cores	Freq.	/Max.	Turbo	S0: Min	S0: Max	S0: Peak	S3	S5
045250	4 GB	A.0	R000	Windows 10	Intel® Core™ i7-7600U	2	2.8 /3.	5 GHz		TBD	TBD	TBD	TBD	TBD
045251	4 GB	A.0	R000	Windows 10	Intel® Core™ i5-7300U	2	2.6 /3.	0 GHz		TBD	TBD	TBD	TBD	TBD
045252	4 GB	A.0	R000	Windows 10	Intel® Core™ i3-7100U	2	2.4 GF	łz/N.A		TBD	TBD	TBD	TBD	TBD
045253	4 GB	A.0	R000	Windows 10	Intel® Celeron® 3965U	2	2.2 Gh	z /N.A		TBD	TBD	TBD	TBD	TBD

2.6 Supply Voltage Battery Power

Table 6 CMOS Battery Power Consumption

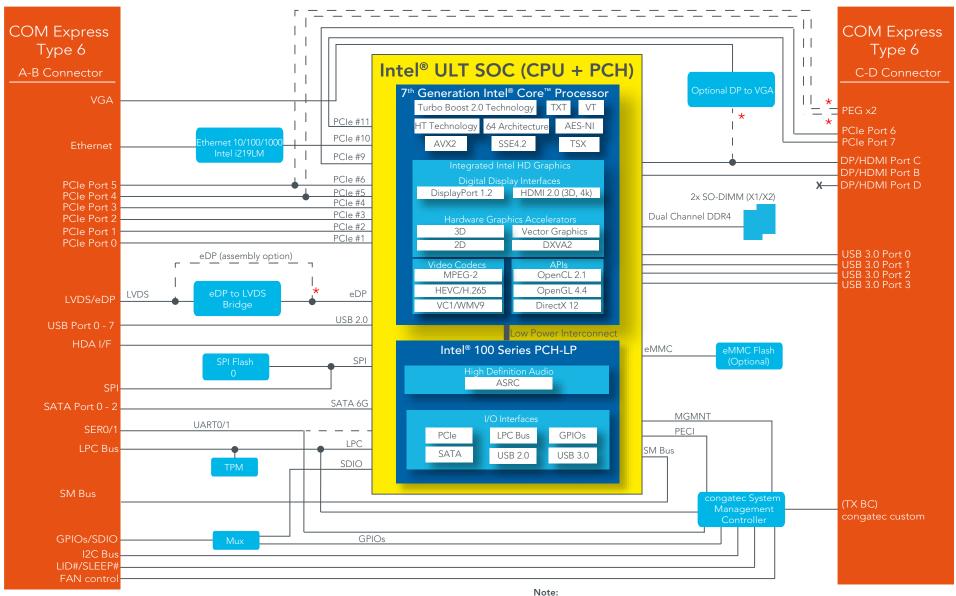
RTC @	Voltage	Current
-10°C	3V DC	TBD μA
20°C	3V DC	TBD µA
70°C	3V DC	TBD μA

- 1. Do not use the CMOS battery power consumption values listed above to calculate CMOS battery lifetime.
- 2. Measure the CMOS battery power consumption of your application in worst case conditions (for example, during high temperature and high battery voltage).
- 3. Consider the self-discharge of the battery when calculating the lifetime of the CMOS battery. For more information, refer to application note AN9_RTC_Battery_Lifetime.pdf on congatec AG website at www.congatec.com/support/application-notes.

2.7 **Environmental Specifications**

Operation: 0° to 60°C Storage: -20° to +80°C Temperature

Humidity Operation: 10% to 90% Storage: 5% to 95%



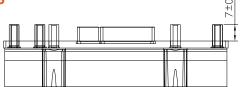
The above operating temperatures must be strictly adhered to at all times. When using a congatec heatspreader, the maximum operating temperature refers to any measurable spot on the heatspreader's surface.

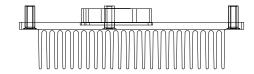
Humidity specifications are for non-condensing conditions.

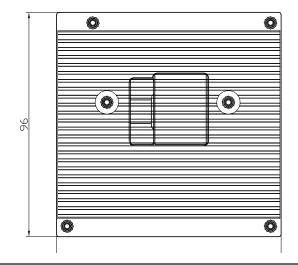
Block Diagram

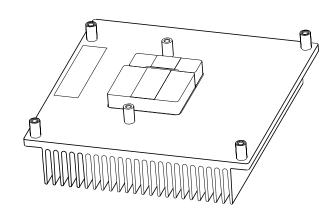
[★] Not supported by default. Only available as assembly option.

4 Cooling Solutions

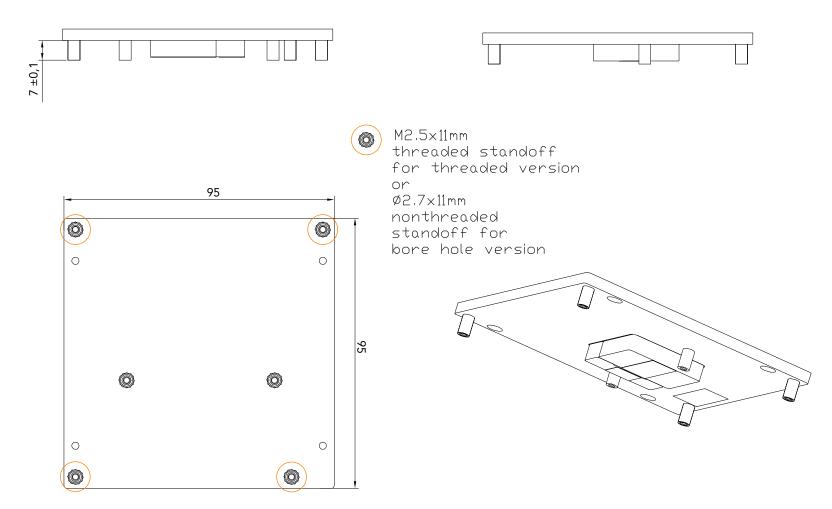

congatec AG offers two cooling solutions for the conga-TC175:


- Passive cooling solution (CSP)
- Heatspreader


The dimensions of the cooling solutions are shown below and all measurements are in millimeters. The mechanical system assembly mounting shall follow the valid DIN/ISO specifications.


The maximum torque specification for all screws is 0.3 Nm. Higher torque may damage the module and/or carrier board.

4.1 CSP Dimensions



4.2 Heatspreader

The heatspreader acts as a thermal coupling device to the module and is thermally coupled to the CPU via a thermal gap filler. On some modules, it may also be thermally coupled to other heat generating components with the use of additional thermal gap fillers. Although the heatspreader is the thermal interface where most of the heat generated by the module is dissipated, it is not to be considered as a heatsink. It has been designed as a thermal interface between the module and the application specific thermal solution.

The application specific thermal solution may use heatsinks with fans, and/or heat pipes, which can be attached to the heatspreader. Some thermal solutions may also require that the heatspreader is attached directly to the systems chassis thereby using the whole chassis as a heat dissipater.

The gap pad material used on all congatec heatspreaders contains silicon oil that can seep out over time depending on the environmental conditions it is subjected to. For more information about this subject, contact your local congatec sales representative and request the gap pad material manufacturer's specification.

Caution

The congatec heatspreaders/cooling solutions are tested only within the commercial temperature range of 0° to 60°C. Therefore, if your application that features a congatec heatspreader/cooling solution operates outside this temperature range, ensure the correct operating temperature of the module is maintained at all times. This may require additional cooling components for your final application's thermal solution.

For adequate heat dissipation, use the mounting holes on the cooling solution to attach it to the module. Apply thread-locking fluid on the screws if the cooling solution is used in a high shock and/or vibration environment. To prevent the standoff from stripping or cross-threading, use non-threaded carrier board standoffs to mount threaded cooling solutions.

For applications that require vertically-mounted cooling solution, use only coolers that secure the thermal stacks with fixing post. Without the fixing post feature, the thermal stacks may move.

Also, do not exceed the maximum torque specified for the screws. Doing so may damage the module or/and the carrier board.

5 Connector Rows

The conga-TC175 is connected to the carrier board via two 220-pin connectors (COM Express Type 6 pinout). These connectors are broken down into four rows. The primary connector consists of rows A and B while the secondary connector consists of rows C and D.

5.1 Primary Connector Rows A and B

The following subsystems can be found on the primary connector rows A and B.

5.1.1 Serial ATA™ (SATA)

The conga-TC175 offers three SATA interfaces (SATA 0-2) on the A-B connector. The interfaces support:

- independent DMA operation
- data transfer rates up to 6.0 Gb/s
- AHCI mode using memory space and RAID mode
- Hot-plug detect

The interface does not support legacy mode using I/O space.

5.1.2 USB 2.0

The conga-TC175 offers 8 USB 2.0 interfaces on the A-B connector. The xHCl host controller in the PCH supports these interfaces with High-Speed, Full-Speed and Low-Speed USB signaling. The controller complies with USB standard 1.1 and 2.0.

5.1.3 High Definition Audio (HDA) Interface

The conga-TC175 provides an interface that supports the connection of HDA audio codecs.

5.1.4 Gigabit Ethernet

The conga-TC175 offers a Gigabit Ethernet interface via an onboard Intel® i219-LM Phy, connected to the SoC's PCIe lane 10. The interface supports full-duplex operation at 10/100/1000 Mbps and half-duplex operation at 10/100 Mbps.

The GBE0_LINK# output is only active during a 100 megabit or 1 gigabit connection. It is not active during a 10 megabit connection. This is a limitation of Ethernet controller since it only has 3 LED outputs, ACT#, LINK100# and LINK1000#. The GBE0_LINK# signal is a logic AND of the GBE0_LINK100# and GBE0_LINK1000# signals on the conga-TC175 module.

5.1.5 LPC Bus

The conga-TC175 offers the LPC (Low Pin Count) bus through the Intel® 100 Series PCH-LP. For information about the decoded LPC addresses, see section 9.1.1.

5.1.6 I²C Bus Fast Mode

The I²C bus is implemented through the congatec board controller (Texas Instruments Tiva™ TM4E1231H6ZRB) and accessed through the congatec CGOS driver and API. The controller provides a fast-mode multi-master I²C bus that has the maximum I²C bandwidth.

5.1.7 PCI Express™

The conga-TC175 offers up to 6 PCI Express™ lanes on the A-B connector via the Intel® 100 Series PCH-LP. The lanes support:

- up to 8 GT/s (Gen 3) speed
- a 6 x1 link configuration
- an optional 1 x4 + 2 x2 link configuration (requires a special/customized BIOS firmware)
- · lane polarity inversion

For the PCI Express lanes on the CD connector, see section 6.2.1.

5.1.8 ExpressCard™

The conga-TC175 supports the implementation of ExpressCards, which requires the dedication of one USB 2.0 port or a x1 PCI Express link for each ExpressCard used.

5.1.9 VGA

The Intel® Kaby Lake ULT SoC does not natively support VGA interface. However, the conga-TC175 can support this interface by integrating an optional DisplayPort to VGA adapter chip.

For VGA support, you need a customized conga-TC175 variant.

5.1.10 LVDS/eDP

The conga-TC175 offers an LVDS interface with optional eDP overlay on the AB connector. The LVDS interface provides LVDS signals by default, but can optionally support eDP signals (assembly option). For more information, contact congatec technical center.

The LVDS interface supports:

- single or dual channel LVDS (color depths of 18 bpp or 24 bpp)
- integrated flat panel interface with clock frequency up to 112 MHz
- VESA and OpenLDI LVDS color mappings
- automatic panel detection via Embedded Panel Interface based on VESA EDID™ 1.3
- resolution up to 1920x1200 in dual LVDS bus mode

The LVDS/eDP interface supports either LVDS or eDP signals. Both signals are not supported simultaneously.

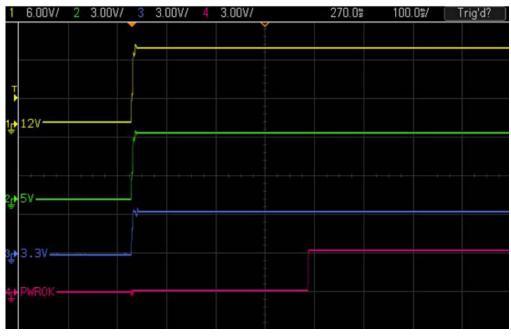
5.1.11 General Purpose Serial Interface

The conga-TC175 offers two UART interfaces via the congatec Board Controller. These interfaces support up to 1 MBps and can operate in low-speed, full-speed and high-speed modes. They do not support hardware handshake and flow control.

The UART interfaces require congatec driver to function.

5.1.12 GPIOs

The conga-TC175 offers General Purpose Input/Output signals on the AB connector.

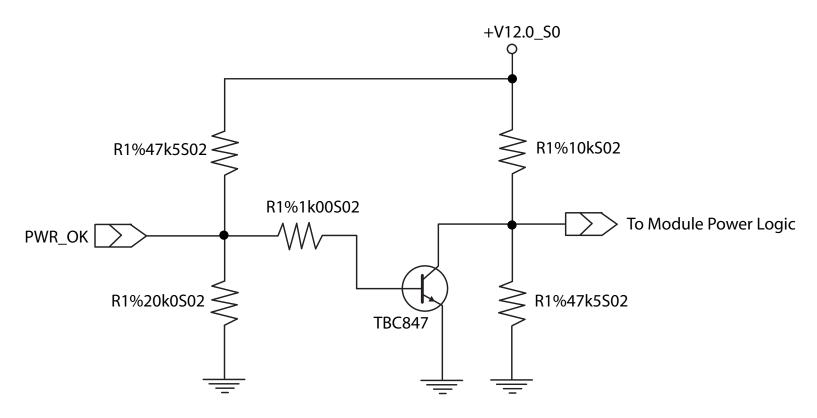

5.1.13 Power Control

PWR_OK

Power OK from main power supply or carrier board voltage regulator circuitry. A high value indicates that the power is good and the module can start its onboard power sequencing.

Carrier board hardware must drive this signal low until all power rails and clocks are stable. Releasing PWR_OK too early or not driving it low at all can cause numerous boot up problems. It is a good design practice to delay the PWR_OK signal a little (typically 100ms) after all carrier board power rails are up, to ensure a stable system.

A sample screenshot is shown below:



The module is kept in reset as long as the PWR_OK is driven by carrier board hardware.

The conga-TC175 PWR_OK input circuitry is implemented as shown below:

The voltage divider ensures the input complies with 3.3 V CMOS characteristic. It also makes it possible to use the module on carrier board designs that do not use the PWR_OK signal. Although the PWR_OK input is not mandatory for the onboard power-up sequencing, it is strongly recommended that the carrier board hardware drives the signal low until it is safe to let the module boot-up.

When considering the above shown voltage divider circuitry and the transistor stage, the voltage measured at the PWR_OK input pin may be only around 0.8V when the 12V is applied to the module. Actively driving PWR_OK high is compliant to the COM Express specification but this can cause back driving. Therefore, congatec recommends driving the PWR_OK low to keep the module in reset and tri-state PWR_OK when the carrier board hardware is ready to boot.

The three typical usage scenarios for a carrier board design are:

• Connect PWR_OK to the "power good" signal of an ATX type power supply.

- Connect PWR_OK to the last voltage regulator in the chain on the carrier board.
- Simply pull PWR_OK with a 1k resistor to the carrier board 3.3V power rail.

With this solution, make sure that before the 3.3 V goes up, all carrier board hardware is fully powered and all clocks are stable.

The conga-TC175 supports the controlling of ATX-style power supplies. If you do not use an ATX power supply, do not connect the conga-TC175 pins SUS_S3/PS_ON, 5V_SB, and PWRBTN# on the conga-TC175.

SUS_S3#/PS_ON#

The SUS_S3#/PS_ON# (pin A15 on the A-B connector) signal is an active-low output that can be used to turn on the main outputs of an ATX-style power supply. To accomplish this the signal must be inverted with an inverter/transistor that is supplied by standby voltage and is located on the carrier board.

PWRBTN#

When using ATX-style power supplies PWRBTN# (pin B12 on the A-B connector) is used to connect to a momentary-contact, active-low debounced push-button input while the other terminal on the push-button must be connected to ground. This signal is internally pulled up to 3V_SB using a 10k resistor. When PWRBTN# is asserted it indicates that an operator wants to turn the power on or off. The response to this signal from the system may vary as a result of modifications made in BIOS settings or by system software.

Standard 12V Power Supply Implementation Guidelines

12 volt input power is the sole operational power source for the conga-TC175. The remaining necessary voltages are generated internally on the module using onboard voltage regulators.

A carrier board designer should be aware of the following important information when designing a power supply for a conga-TC175 application:

• We noticed that occasionally problems occur when using a 12V power supply that produces non monotonic voltage when powered up. The problem is that some internal circuits on the module (e.g. clock-generator chips) will generate their own reset signals when the supply voltage exceeds a certain voltage threshold. A voltage dip after passing this threshold may lead to these circuits becoming confused resulting in a malfunction. This problem is rare but has been observed in some mobile power supply applications. To ensure that this problem does not occur, observe the power supply rise waveform with an oscilloscope to determine if the rise is indeed monotonic and does not have any dips. Do this during the power supply qualification phase to ensure that the above mentioned problem does not occur in the application. For more information about this issue visit www.formfactors.org and view page 25 figure 7 of the document "ATX12V Power Supply Design Guide V2.2".

5.1.14 Power Management

ACPI

The conga-TC175 supports Advanced Configuration and Power Interface (ACPI) specification, revision 4.0a. It also supports Suspend to RAM (S3). For more information, see section 7.3 "ACPI Suspend Modes and Resume Events".

DEEP Sx

The Deep Sx is a lower power state employed to minimize the power consumption while in S3/S4/S5. In the Deep Sx state, the system entry condition determines if the system context is maintained or not. All power is shut off except for minimal logic which supports limited set of wake events for Deep Sx. The Deep Sx on resumption, puts system back into the state it is entered from. In other words, if Deep Sx state was entered from S3 state, then the resume path will place system back into S3.

5.2 Secondary Connector Rows C and D

The following subsystems can be found on the secondary connector rows C and D.

5.2.1 PCI Express™

The conga-TC175 offers two PCI Express lanes (6 and 7) on the CD connector. For more information on supported PCI Express lanes, see section 5.1.7.

5.2.2 PCI Express Graphics (PEG)

The conga-TC175 supports an optional x1 or x2 PEG port on the CD connector. To support this optional interface, you need a customized conga-TC175 variant. For more information, contact congatec technical support team.

5.2.3 Digital Display Interface

The conga-TC175 offers up to two Digital Display Interfaces (digital port B and C). Each interface can be configured as DisplayPort or HDMI/DVI and also supports dual mode (DP++). The conga-TC175 can optionally support VGA on the DDI digital port C via a DP to VGA adapter IC. This option requires a customized conga-TC175 variant.

The conga-TC175 supports up to three independent displays. The display combination must be 2 DDI and 1 LVDS/eDP. For customized variants with optional VGA, the combination must be 1x DDI (Port B), 1x VGA (via Port C) and 1x eDP. The table below shows the conga-TC175 display combination. This table does not apply to customized variants equipped with optional VGA interface.

Table 7 Display Combination (U-processor line)

Display 1	Display 2	Display 3	Display 1	Display 2	Display 3
(DDI Port B)	(DDI Port C)	-	Max. Resolution	Max. Resolution	Max. Resolution
HDMI 1.4	HDMI 1.4	eDP	4096x2160 @24Hz, 24 bpp	4096x2160 @24Hz, 24 bpp	4096x2304 @ 60Hz, 24bpp
DP	DP	eDP	4096x2304 @ 60Hz, 24bpp	4096x2304 @ 60Hz, 24bpp	4096x2304 @ 60Hz, 24bpp
HDMI 1.4	DP	eDP	4096x2160 @24Hz, 24 bpp	4096x2304 @ 60Hz, 24bpp	4096x2304 @ 60Hz, 24bpp

The DP and eDP resolutions in the table above are supported for four lanes with HBR2 link data rate. The DisplayPort Aux CH, DDC channel, panel power sequencing and HPD are supported through the PCH.

5.2.3.1 HDMI

The conga-TC175 offers two HDMI ports on the CD connector via the Digital Display Interfaces. The HDMI interfaces are based on HDMI 1.4 specification with support for 3D, 4Kx2K@24Hz, Deep Color and x.v Color. These interfaces are multiplexed onto the Digital Display Interface of the COM Express connector.

Supported audio formats are AC-3 Dolby Digital, Dolby Digital Plus, DTS-HD, LPCM, 192 KHz/24 bit, 8 channel, Dolby TrueHD, DTS-HD Master Audio (Lossless Blu-Ray Disc Audio Format).

The conga-TC175 supports a maximum of two independent HDMI displays. Revisions equipped with optional VGA interface support only one HDMI interface. See table 2 above for possible display combinations. Consumer electronics control (CEC) is not supported.

5.2.3.2 DVI

The conga-TC175 offers two DVI ports on the CD connector. The DVI interfaces are multiplexed onto the Digital Display Interface of the COM Express connector.

The conga-TC175 supports a maximum of two independent DVI displays. Revisions equipped with optional VGA interface support only one DVI interface. See table 2 above for possible display combinations.

5.2.3.3 DisplayPort (DP)

The conga-TC175 offers two DP ports, each capable of supporting data rate of 1.62 GT/s, 2.97 GT/s and 5.4 GT/s on 1, 2 or 4 data lanes. The DP is multiplexed onto the Digital Display Interface (DDI) of the COM Express connector and can support up to 4096x2304 resolutions at 60Hz.

The DisplayPort specification is a VESA standard aimed at consolidating internal and external connection methods to reduce device complexity, supporting key cross industry applications, and providing performance scalability to enable the next generation of displays. See section 8.5 of this document for more information about enabling DisplayPort peripherals.

The conga-TC175 supports a maximum of two independent DisplayPort displays. Revisions equipped with optional VGA interface support only one DP interface. See table 2 above for possible display combinations.

5.2.4 USB 3.0

The conga-TC175 offers four SuperSpeed USB 3.0 ports on the CD connector. These ports are controlled by the xHCl host controller provided by the Intel® 100 Series PCH-LP, which is integrated in the Multi-Chip Package. The host controller allows data transfers of up to 5 Gb/s and supports SuperSpeed, High-Speed, Full-Speed and Low-Speed traffic.

The xHCl controller supports USB debug port on all USB 3.0 capable ports.

6 Additional Features

6.1 congatec Board Controller (cBC)

The conga-TC175 is equipped with Texas Instruments Tiva™ TM4E1231H6ZRB microcontroller. This onboard microcontroller plays an important role for most of the congatec embedded/industrial PC features. It fully isolates some of the embedded features such as system monitoring or the I²C bus from the x86 core architecture, which results in higher embedded feature performance and more reliability, even when the x86 processor is in a low power mode. It also ensures that the congatec embedded feature set is fully compatible amongst all congatec modules.

6.2 Board Information

The cBC provides a rich data-set of manufacturing and board information such as serial number, EAN number, hardware and firmware revisions, and so on. It also keeps track of dynamically changing data like runtime meter and boot counter.

6.3 Watchdog

The conga-TC175 is equipped with a multi stage watchdog solution that is triggered by software. The COM Express™ Specification does not provide support for external hardware triggering of the Watchdog, which means the conga-TC175 does not support external hardware triggering. For more information about the Watchdog feature, see the BIOS setup description in section 10.4.2 of this document and application note AN3_Watchdog.pdf on the congatec AG website at www.congatec.com.

The conga-TC175 module does not support the watchdog NMI mode.

6.4 I²C Bus

The conga-TC175 supports I^2C bus. Thanks to the I^2C host controller in the cBC, the I^2C bus is multi-master capable and runs at fast mode.

6.5 Power Loss Control

The cBC has full control of the power-up of the module and therefore can be used to specify the behavior of the system after an AC power loss condition. Supported modes are "Always On", "Remain Off" and "Last State".

6.6 OEM BIOS Customization

The conga-TC175 is equipped with congatec Embedded BIOS, which is based on American Megatrends Inc. Aptio UEFI firmware. The congatec Embedded BIOS allows system designers to modify the BIOS. For more information about customizing the congatec Embedded BIOS, refer to the congatec System Utility user's guide CGUTLm1x.pdf on the congatec website at www.congatec.com or contact technical support.

The customization features supported are described below:

6.6.1 OEM Default Settings

This feature allows system designers to create and store their own BIOS default configuration. Customized BIOS development by congatec for OEM default settings is no longer necessary because customers can easily perform this configuration by themselves using the congatec system utility CGUTIL. See congatec application note AN8_Create_OEM_Default_Map.pdf on the congatec website for details on how to add OEM default settings to the congatec Embedded BIOS.

6.6.2 OEM Boot Logo

This feature allows system designers to replace the standard text output displayed during POST with their own BIOS boot logo. Customized BIOS development by congatec for OEM Boot Logo is no longer necessary because customers can easily perform this configuration by themselves using the congatec system utility CGUTIL. See congatec application note AN8_Create_And_Add_Bootlogo.pdf on the congatec website for details on how to add OEM boot logo to the congatec Embedded BIOS.

6.6.3 OEM POST Logo

This feature allows system designers to replace the congatec POST logo displayed in the upper left corner of the screen during BIOS POST with their own BIOS POST logo. Use the congatec system utility CGUTIL 1.5.4 or later to replace/add the OEM POST logo.

6.6.4 OEM BIOS Code/Data

With the congatec embedded BIOS it is possible for system designers to add their own code to the BIOS POST process. The congatec Embedded BIOS first calls the OEM code before handing over control to the OS loader.

Except for custom specific code, this feature can also be used to support Win XP SLP installation, Window 7 SLIC table (OA2.0), Windows 8 OEM activation (OA3.0), verb tables for HDA codecs, PCI/PCIe opROMs, bootloaders, rare graphic modes and Super I/O controller initialization.

The OEM BIOS code of the new UEFI based firmware is only called when the CSM (Compatibility Support Module) is enabled in the BIOS setup menu. Contact congatec technical support for more information on how to add OEM code.

6.6.5 OEM DXE Driver

This feature allows designers to add their own UEFI DXE driver to the congatec embedded BIOS. Contact congatec technical support for more information on how to add an OEM DXE driver.

6.7 congatec Battery Management Interface

In order to facilitate the development of battery powered mobile systems based on embedded modules, congated AG has defined an interface for the exchange of data between a CPU module (using an ACPI operating system) and a Smart Battery system. A system developed according to the congated Battery Management Interface Specification can provide the battery management functions supported by an ACPI capable operating system (e.g. charge state of the battery, information about the battery, alarms/events for certain battery states, ...) without the need for any additional modifications to the system BIOS.

In addition to the ACPI-Compliant Control Method Battery mentioned above, the latest versions of the conga-TC175 BIOS and board controller firmware also support LTC1760 battery manager from Linear Technology and a battery only solution (no charger). All three battery solutions are supported on the I2C bus and the SMBus. This gives the system designer more flexibility when choosing the appropriate battery sub-system.

For more information about this subject visit the congatec website and view the following documents:

- congatec Battery Management Interface Specification
- Battery System Design Guide
- conga-SBM³ User's Guide

6.8 API Support (CGOS)

In order to benefit from the above mentioned non-industry standard feature set, congatec provides an API that allows application software developers to easily integrate all these features into their code. The CGOS API (congatec Operating System Application Programming Interface) is the congatec proprietary API that is available for all commonly used Operating Systems such as Win32, Win64, Win CE, Linux. The architecture of the CGOS API driver provides the ability to write application software that runs unmodified on all congatec CPU modules. All the hardware related code is contained within the congatec embedded BIOS on the module. See section 1.1 of the CGOS API software developers guide, which is available on the congatec website.

6.9 Security Features

The conga-TC175 can be equipped optionally with a "Trusted Platform Module" (TPM 1.2/2.0). This TPM 1.2/2.0 includes coprocessors to calculate efficient hash and RSA algorithms with key lengths up to 2,048 bits as well as a real random number generator. Security sensitive applications like gaming and e-commerce will benefit also with improved authentication, integrity and confidence levels.

6.10 Suspend to Ram

The Suspend to RAM feature is available on the conga-TC175.

7 conga Tech Notes

The conga-TC175 has some technological features that require additional explanation. The following section will give the reader a better understanding of some of these features.

7.1 Intel® PCH-LP Features

7.1.1 Intel® Rapid Storage Technology

The Intel® 100 Series PCH-LP provides support for Intel® Rapid Storage Technology, allowing AHCI functionality and RAID 0/1/5/10 support.

7.1.1.1 AHCI

The Intel® 100 Series PCH-LP provides hardware support for Advanced Host Controller Interface (AHCI), a standardized programming interface for SATA host controllers. Platforms that support AHCI benefit from performance-enhancing features such as port independent DMA engines (each device is treated as a master) and a hardware-assisted native command queuing. AHCI also provides hot-plug and advanced power management to improve usability.

7.1.1.2 RAID

The PCH-LP supports RAID 0, 1 and 5 on the 3 SATA ports. Software components include an Option ROM and UEFI driver for pre-boot configuration and boot functionality, a Microsoft Windows compatible driver, and a user interface for configuring and managing the RAID capability of the Intel® 100 Series PCH-LP.

7.1.1.3 Intel® Smart Response Technology

Intel® Smart Response Technology is a disk caching solution that can provide improved computer system performance with improved power savings. This technology enables the use of low cost, small capacity SSDs as cache to boost the performance of higher capacity HDDs.

This feature requires an Intel® Core Processor and a solid state hybrid drive with minimum 16GB capacity and SATA-10 Hybrid Information support.

7.2 Intel® Processor Features

7.2.1 Intel® Turbo Boost Technology

Intel® Turbo Boost Technology allows processor cores to run faster than the base operating frequency if it's operating below power, current, and temperature specification limits. Intel® Turbo Boost Technology is activated when the Operating System (OS) requests the highest processor performance state. The maximum frequency of Intel® Turbo Boost Technology depends on the number of active cores. The amount of time the processor spends in the Intel Turbo Boost 2 Technology state depends on the workload and operating environment. Any of the following can set the upper limit of Intel® Turbo Boost Technology on a given workload:

- Number of active cores
- Estimated current consumption
- Estimated power consumption
- Processor temperature

When the processor is operating below these limits and the user's workload demands additional performance, the processor frequency dynamically increases by 100 MHz on short and regular intervals until the upper limit is met or the maximum possible upside for the number of active cores is reached. For more information about Intel® Turbo Boost 2 Technology visit the Intel® website.

Only conga-TC175 variants that feature the Core™ i7 and i5 processors support Intel® Turbo Boost 2 Technology. Refer to the power consumption tables in section 2.5 of this document for information about the maximum turbo frequency available for each variant of the conga-TC175.

7.2.2 Adaptive Thermal Monitor and Catastrophic Thermal Protection

Intel® Xeon, Core™ i7/i5/i3 and Celeron® processors have a thermal monitor feature that helps to control the processor temperature. The integrated TCC (Thermal Control Circuit) activates if the processor silicon reaches its maximum operating temperature. The activation temperature that the Intel® Thermal Monitor uses to activate the TCC can be slightly modified via TCC Activation Offset in BIOS setup submenu "CPU submenu".

The Adaptive Thermal Monitor controls the processor temperature using two methods:

- Adjusting the processor's operating frequency and core voltage (EIST transitions)
- Modulating (start/stop) the processor's internal clocks at a duty cycle of 25% on and 75% off

When activated, the TCC causes both processor core and graphics core to reduce frequency and voltage adaptively. The Adaptive Thermal Monitor will remain active as long as the package temperature remains at its specified limit. Therefore, the Adaptive Thermal Monitor will continue to reduce the package frequency and voltage until the TCC is de-activated. Clock modulation is activated if frequency and voltage adjustments are insufficient. Additional hardware, software drivers, or operating system support is not required.

The maximum operating temperature for Intel® Xeon, Core™ i7/i5/i3 and Celeron® processors is 100°C.

To ensure that the TCC is active for only short periods of time, thus reducing the impact on processor performance to a minimum, it is necessary to have a properly designed thermal solution. The Intel[®] Xeon, $Core^{TM}$ i7/i5/i3 and Celeron[®] processor's respective datasheet can provide you with more information about this subject.

Intel®'s Core™ i7/i5/i3 and Celeron® processors use the THERMTRIP# signal to shut down the system if the processor's silicon reaches a temperature of approximately 125°C. The THERMTRIP# signal activation is completely independent from processor activity and therefore does not produce any bus cycles.

In order for THERMTRIP# to be able to automatically switch off the system, it is necessary to use an ATX style power supply.

7.2.3 Processor Performance Control

Intel® processors found on the conga-TC175 run at different voltage/frequency states (performance states) referred to as Enhanced Intel® SpeedStep® technology (EIST). Operating systems that support performance control take advantage of microprocessors that use several different performance states in order to efficiently operate the processor when it's not being fully used. The operating system will determine the necessary performance state that the processor should run at so that the optimal balance between performance and power consumption can be achieved during runtime.

The Windows family of operating systems links its processor performance control policy to the power scheme setting. You must ensure that the power scheme setting you choose has the ability to support Enhanced Intel® SpeedStep® technology.

Intel Speed Shift is a new and energy efficient method for frequency control featured in the 7th Generation *Intel® Core™* processor family. This feature is also referred to as Hardware-controlled Performance States (HWP). It is a hardware implementation of the ACPI defined Collaborative Processor Performance Control (CPPC2) and is supported by newer operating systems (Win 8.1 or newer).

With this feature enabled, the processor autonomously selects performance states based on workload demand and thermal limits while also considering information provided by the OS; for example, the performance limits and workload history.

7.2.4 Intel® 64 Architecture

The formerly known Intel® Extended Memory 64 Technology is an enhancement to Intel®'s IA-32 architecture. Intel® 64 is only available on Intel® processors and is designed to run with newly written 64-bit code and access more than 4GB of memory. Processors with Intel® 64 architecture support 64-bit-capable operating systems from Microsoft, Red Hat and SuSE. Processors running in legacy mode remain fully compatible with today's existing 32-bit applications and operating systems

Platforms with Intel® 64 can be run in three basic ways:

- 1. **Legacy Mode:** 32-bit operating system and 32-bit applications. In this mode no software changes are required, however the benefits of Intel® 64 are not utilized.
- 2. **Compatibility Mode:** 64-bit operating system and 32-bit applications. This mode requires all device drivers to be 64-bit. The operating system will see the 64-bit extensions but the 32-bit application will not. Existing 32-bit applications do not need to be recompiled and may or may not benefit from the 64-bit extensions. The application will likely need to be re-certified by the vendor to run on the new 64-bit extended operating system.
- 3. **64-bit Mode:** 64-bit operating system and 64-bit applications. This usage requires 64-bit device drivers. It also requires applications to be modified for 64-bit operation and then recompiled and validated.

Intel® 64 supports:

- 64-bit flat virtual address space
- 64-bit pointers
- 64-bit wide general purpose registers
- 64-bit integer support
- Up to one Terabyte (TB) of platform address space

You can find more information about Intel® 64 Technology at: http://developer.intel.com/technology/intel64/index.htm

7.2.5 Intel® Virtualization Technology

Virtualization solutions enhanced by Intel® VT will allow a Xeon and Core™ i7/i5/i3 platform to run multiple operating systems and applications in independent partitions. When using virtualization capabilities, one computer system can function as multiple "virtual" systems. With processor and I/O enhancements to Intel®'s various platforms, Intel® Virtualization Technology can improve the performance and robustness of today's software-only virtual machine solutions.

Intel® VT is a multi-generational series of extensions to Intel® processor and platform architecture that provides a new hardware foundation for virtualization, establishing a common infrastructure for all classes of Intel® based systems. The broad availability of Intel® VT makes it possible to create entirely new applications for virtualization in servers, clients as well as embedded systems thus providing new ways to improve system reliability, manageability, security, and real-time quality of service.

The success of any new hardware architecture is highly dependent on the system software that puts its new features to use. In the case of virtualization technology, that support comes from the virtual machine monitor (VMM), a layer of software that controls the underlying physical platform resources sharing them between multiple "guest" operating systems. Intel® VT is already incorporated into most commercial and open-source VMMs including those from VMware, Microsoft, XenSource, Parallels, Virtual Iron, Jaluna and TenAsys.

You can find more information about Intel® Virtualization Technology at: http://developer.intel.com/technology/virtualization/index.htm

congatec does not offer virtual machine monitor (VMM) software. All VMM software support questions and queries should be directed to the VMM software vendor and not congatec technical support.

7.2.6 Thermal Management

ACPI is responsible for allowing the operating system to play an important part in the system's thermal management. This results in the operating system having the ability to take control of the operating environment by implementing cooling decisions according to the demands put on the CPU by the application.

The conga-TC175 supports Critical Trip Point. This cooling policy ensures that the operating system shuts down properly if the temperature in the thermal zone reaches a critical point, in order to prevent damage to the system as a result of high temperatures. Use the "critical trip point" setup node in the BIOS setup program to determine the temperature threshold that the operating system will use to shut down the system.

For processor passive cooling, use the Thermal Control Circuit (TCC) Activation Offset setting in the CPU configuration setup sub menu. The TCC in the processor is activated at 100°C by default but can be lowered by the Activation Offset e.g., setting 10 activates TCC at 90°C. ACPI OS support is not required.

The end user must determine the cooling preferences for the system by using the setup nodes in the BIOS setup program to establish the appropriate trip points.

7.3 ACPI Suspend Modes and Resume Events

The conga-TC175 BIOS supports S3 (Suspend to RAM). The BIOS does not support S4 (Suspend to Disk) even though the following operating systems support it (S4_OS = Hibernate):

• Windows 10, Linux.

For more information about ACPI, see section 10.4.5 "ACPI Configuration Submenu".

Table 8 Wake Events

The table below lists the events that wake the system from S3.

Wake Event	Conditions/Remarks
Power Button	Wakes unconditionally from S3-S5.
Onboard LAN Event	Device driver must be configured for Wake On LAN support.
SMBALERT#	Wakes unconditionally from S3-S5.
PCI Express WAKE#	Wakes unconditionally from S3-S5.
WAKE#	Wakes unconditionally from S3.
PME#	Activate the wake up capabilities of a PCI device using Windows Device Manager configuration options for this device OR set Resume On PME# to Enabled in the Power setup menu.
USB Mouse/Keyboard Event	When Standby mode is set to S3, USB hardware must be powered by standby power source. Set USB Device Wakeup from S3/S4 to ENABLED in the ACPI setup menu (if setup node is available in BIOS setup program). In Device Manager look for the keyboard/mouse devices. Go to the Power Management tab and check 'Allow this device to bring the computer out of standby'.
RTC Alarm	Activate and configure Resume On RTC Alarm in the Power setup menu. Only available in S5.
Watchdog Power Button Event	Wakes unconditionally from S3-S5.

7.4 DDR4 Memory

The Intel Kaby Lake ULT SoC featured on the conga-TC175 supports DDR4 memory modules up to 2133 MT/s. The DDR4 memory modules have lower voltage requirements with higher data rate transfer speeds. They operate at a voltage of 1.2V. With this low voltage system memory interface on the processor, the conga-TC175 offers a system optimized for lowest possible power consumption. The reduction in power consumption due to lower voltage subsequently reduces the heat generated.

8 Signal Descriptions and Pinout Tables

The following section describes the signals found on COM Express™ Type VI connectors used for congatec AG modules. The pinout of the modules complies with COM Express Type 6 Rev. 2.1.

Table 3 describes the terminology used in this section for the Signal Description tables. The PU/PD column indicates if a COM Express™ module pull-up or pull-down resistor has been used. If the field entry area in this column for the signal is empty, then no pull-up or pull-down resistor has been implemented by congatec.

The "#" symbol at the end of the signal name indicates that the active or asserted state occurs when the signal is at a low voltage level. When "#" is not present, the signal is asserted when at a high voltage level.

The Signal Description tables do not list internal pull-ups or pull-downs implemented by the chip vendors, only pull-ups or pull-downs implemented by congatec are listed. For information about the internal pull-ups or pull-downs implemented by the chip vendors, refer to the respective chip's datasheet.

Table 9 Terminology Descriptions

Term	Description
PU	congatec implemented pull-up resistor
PD	congatec implemented pull-down resistor
I/O 3.3V	Bi-directional signal 3.3V tolerant
I/O 5V	Bi-directional signal 5V tolerant
I 3.3V	Input 3.3V tolerant
I 5V	Input 5V tolerant
I/O 3.3VSB	Input 3.3V tolerant active in standby state
O 3.3V	Output 3.3V signal level
O 5V	Output 5V signal level
OD	Open drain output
Р	Power Input/Output
DDC	Display Data Channel
PCIE	In compliance with PCI Express Base Specification, Revision 2.0
PEG	PCI Express Graphics
SATA	In compliance with Serial ATA specification Revision 2.6 and 3.0.
REF	Reference voltage output. May be sourced from a module power plane.
PDS	Pull-down strap. A module output pin that is either tied to GND or is not connected. Used to signal module capabilities (pinout type) to the Carrier Board.

8.1 A-B Connector Signal Descriptions

Table 10 Intel® High Definition Audio Link Signals Descriptions

Signal	Pin #	Description	I/O	PU/PD	Comment
AC/HDA_RST#	A30	Intel® High Definition Audio Reset: This signal is the master hardware reset to external codec(s).	O 3.3VSB		AC'97 codecs are not supported.
AC/HDA_SYNC	A29	Intel® High Definition Audio Sync: This signal is a 48 kHz fixed rate sample sync to the codec(s). It is also used to encode the stream number.	O 3.3VSB		AC'97 codecs are not supported.
AC/HDA_BITCLK	A32	Intel® High Definition Audio Bit Clock Output: This signal is a 24.000MHz serial data clock generated by the Intel® High Definition Audio controller.	O 3.3VSB		AC'97 codecs are not supported.
AC/HDA_SDOUT	A33	Intel® High Definition Audio Serial Data Out: This signal is the serial TDM data output to the codec(s). This serial output is double-pumped for a bit rate of 48 Mbps for Intel® High Definition Audio.	O 3.3VSB	PU 1K 3.3VSB	AC'97 codecs are not supported. AC/HDA_SDOUT is a boot strap signal (see note below)
AC/HDA_SDIN[1:0]	B29-B30	Intel® High Definition Audio Serial Data In [0]: These signals are serial TDM data inputs from the three codecs. The serial input is single-pumped for a bit rate of 24 Mbps for Intel® High Definition Audio.	I 3.3VSB		Pin B28 (HDA_SDIN2) is not connected.

Some signals have special functionality during the reset process. They may bootstrap some basic important functions of the module. For more information refer to section 8.5 of this user's guide.

Table 11 Gigabit Ethernet Signal Descriptions

Gigabit	Pin #	Description				I/O	PU/PD	Comment
Ethernet								
GBE0_MDI0+	A13				ential Pairs 0, 1, 2, 3. The MDI can operate	e I/O		Twisted pair
GBE0_MDI0-	A12	in 1000, 100, and 10N	/Ibit/sec modes. Some p	pairs are unused in sc	me modes according to the following:	Analog		signals for
GBE0_MDI1+	A10		1000	100	10			external
GBE0_MDI1-	A9	MDI[0]+/-	B1 DA+/-	TX+/-	TX+/-			transformer.
GBE0_MDI2+ GBE0 MDI2-	A7 A6	MDI[1]+/-	B1_DB+/-	RX+/-	RX+/-			
GBE0_MDI3+	А3	MDI[2]+/-	B1_DC+/-					
GBE0_MDI3-	A2	MDI[3]+/-	B1_DD+/-					
GBE0_ACT#	B2	Gigabit Ethernet Cor	ntroller 0 activity indicat	or, active low.		O 3.3VSB		
GBE0_LINK#	A8	Gigabit Ethernet Cor	ntroller 0 link indicator, a	active low.		O 3.3VSB		
GBE0_LINK100#	A4	Gigabit Ethernet Cor	ntroller 0 100Mbit/sec lin	nk indicator, active lo	W.	O 3.3VSB		
GBE0_LINK1000#	A5	Gigabit Ethernet Cor	Gigabit Ethernet Controller 0 1000Mbit/sec link indicator, active low.					
GBE0_CTREF	A14	Reference voltage fo	Reference voltage for Carrier Board Ethernet channel 0 magnetics center tap. The reference voltage is					Not
			determined by the requirements of the module PHY and may be as low as OV and as high as 3.3V. The					connected
		reference voltage ou	tput shall be current lim	ited on the module.	In the case in which the reference is			
		shorted to ground, th	ne current shall be limite	ed to 250mA or less.				

The GBEO_LINK# output is only active during a 100 Mbit or 1 Gbit connection, it is not active during a 10 Mbit connection. This is a limitation of the Ethernet controller because it has only three LED outputs (ACT#, LINK100# and LINK1000#).

The GBE0_LINK# signal is a logic AND of the GBE0_LINK100# and GBE0_LINK1000# signals on the conga-TC175 module.

Table 12 SATA Signal Descriptions

Signal	Pin #	Description	I/O	PU/PD	Comment
SATA0_RX+ SATA0_RX-	A19 A20	Serial ATA channel 0, Receive Input differential pair.	I SATA		Supports Serial ATA specification, Revision 3.0
SATA0_TX+ SATA0_TX-	A16 A17	Serial ATA channel 0, Transmit Output differential pair.	O SATA		Supports Serial ATA specification, Revision 3.0
SATA1_RX+ SATA1_RX-	B19 B20	Serial ATA channel 1, Receive Input differential pair.	I SATA		Supports Serial ATA specification, Revision 3.0
SATA1_TX+ SATA1_TX-	B16 B17	Serial ATA channel 1, Transmit Output differential pair.	O SATA		Supports Serial ATA specification, Revision 3.0
SATA2_RX+ SATA2_RX-	A25 A26	Serial ATA channel 2, Receive Input differential pair.	I SATA		Supports Serial ATA specification, Revision 3.0
SATA2_TX+ SATA2_TX-	A22 A23	Serial ATA channel 2, Transmit Output differential pair.	O SATA		Supports Serial ATA specification, Revision 3.0
SATA3_RX+ SATA3_RX-	B25 B26	Serial ATA channel 3, Receive Input differential pair.	I SATA		Not supported. The Intel chipset supports only 3 SATA ports.
SATA3_TX+ SATA3_TX-	B22 B23	Serial ATA channel 3, Transmit Output differential pair.	O SATA		Not supported. The Intel chipset supports only 3 SATA ports.
(S)ATA_ACT#	A28	ATA (parallel and serial) or SAS activity indicator, active low.	I/O 3.3v		

Table 13 PCI Express Signal Descriptions (general purpose)

Signal	Pin #	Description	I/O	PU/PD	Comment
PCIE_RX0+ PCIE_RX0-	B68 B69	PCI Express channel 0, Receive Input differential pair.	I PCIE		Supports PCI Express Base Specification, Revision 3.0
PCIE_TX0+ PCIE_TX0-	A68 A69	PCI Express channel 0, Transmit Output differential pair.	O PCIE		Supports PCI Express Base Specification, Revision 3.0
PCIE_RX1+ PCIE_RX1-	B64 B65	PCI Express channel 1, Receive Input differential pair.	I PCIE		Supports PCI Express Base Specification, Revision 3.0
PCIE_TX1+ PCIE_TX1-	A64 A65	PCI Express channel 1, Transmit Output differential pair.	O PCIE		Supports PCI Express Base Specification, Revision 3.0
PCIE_RX2+ PCIE_RX2-	B61 B62	PCI Express channel 2, Receive Input differential pair.	I PCIE		Supports PCI Express Base Specification, Revision 3.0
PCIE_TX2+ PCIE_TX2-	A61 A62	PCI Express channel 2, Transmit Output differential pair.	O PCIE		Supports PCI Express Base Specification, Revision 3.0
PCIE_RX3+ PCIE_RX3-	B58 B59	PCI Express channel 3, Receive Input differential pair.	I PCIE		Supports PCI Express Base Specification, Revision 3.0
PCIE_TX3+ PCIE_TX3-	A58 A59	PCI Express channel 3, Transmit Output differential pair.	O PCIE		Supports PCI Express Base Specification, Revision 3.0
PCIE_RX4+ PCIE_RX4-	B55 B56	PCI Express channel 4, Receive Input differential pair.	I PCIE		Supports PCI Express Base Specification, Revision 3.0
PCIE_TX4+ PCIE_TX4-	A55 A56	PCI Express channel 4, Transmit Output differential pair.	O PCIE		Supports PCI Express Base Specification, Revision 3.0
PCIE_RX5+ PCIE_RX5-	B52 B53	PCI Express channel 5, Receive Input differential pair.	I PCIE		Supports PCI Express Base Specification, Revision 3.0
PCIE_TX5+ PCIE_TX5-	A52 A53	PCI Express channel 5, Transmit Output differential pair.	O PCIE		Supports PCI Express Base Specification, Revision 3.0
PCIE_CLK_REF+ PCIE_CLK_REF-	A88 A89	PCI Express Reference Clock output for all PCI Express and PCI Express Graphics Lanes.	O PCIE		A PCI Express Gen2/3 compliant clock buffer chip must be used on the carrier board if the design involves more than one PCI Express device.

PCIe lanes 4 and 5 are not supported if the optional PEG port is implemented.

Table 14 ExpressCard Support Pins Signal Descriptions

Signal	Pin #	Description	I/O	PU/PD	Comment
EXCD0_CPPE#	A49	ExpressCard capable card request.	I 3.3V	PU 10k 3.3VSB	
EXCD1_CPPE#	B48				

EXCD0_PERST#	A48	ExpressCard Reset	O 3.3V	PU 10k 3.3V
EXCD1_PERST#	B47			

Table 15 LPC Signal Descriptions

Signal	Pin #	Description	I/O	PU/PD	Comment
LPC_AD[0:3]	B4-B7	LPC multiplexed address, command and data bus	I/O 3.3V		
LPC_FRAME#	В3	LPC frame indicates the start of an LPC cycle	O 3.3V		
LPC_DRQ[0:1]#	B8-B9	LPC serial DMA request	I 3.3V	PU 10k 3.3V	
LPC_SERIRQ	A50	LPC serial interrupt	I/O OD 3.3V	PU 10k 3.3V	
LPC_CLK	B10	LPC clock output - 24 MHz nominal	O 3.3V		

Table 16 USB Signal Descriptions

Signal	Pin #	Description	I/O	PU/PD	Comment
USB0+	B46	USB Port 0, data + or D+	1/0		USB 2.0 compliant. Backwards compatible to USB 1.1
USB0-	B45	USB Port 0, data - or D-	1/0		USB 2.0 compliant. Backwards compatible to USB 1.1
USB1+	A46	USB Port 1, data + or D+	1/0		USB 2.0 compliant. Backwards compatible to USB 1.1
USB1-	A45	USB Port 1, data - or D-	I/O		USB 2.0 compliant. Backwards compatible to USB 1.1
USB2+	A43	USB Port 2, data + or D+	1/0		USB 2.0 compliant. Backwards compatible to USB 1.1
USB2-	A42	USB Port 2, data - or D-	1/0		USB 2.0 compliant. Backwards compatible to USB 1.1
USB3+	B43	USB Port 3, data + or D+	1/0		USB 2.0 compliant. Backwards compatible to USB 1.1
USB3-	B42	USB Port 3, data - or D-	1/0		USB 2.0 compliant. Backwards compatible to USB 1.1
USB4+	A40	USB Port 4, data + or D+	1/0		USB 2.0 compliant. Backwards compatible to USB 1.1
USB4-	A39	USB Port 4, data - or D-	1/0		USB 2.0 compliant. Backwards compatible to USB 1.1
USB5+	B40	USB Port 5, data + or D+	1/0		USB 2.0 compliant. Backwards compatible to USB 1.1
USB5-	B39	USB Port 5, data - or D-	1/0		USB 2.0 compliant. Backwards compatible to USB 1.1
USB6+	A37	USB Port 6, data + or D+	1/0		USB 2.0 compliant. Backwards compatible to USB 1.1
USB6-	A36	USB Port 6, data - or D-	1/0		USB 2.0 compliant. Backwards compatible to USB 1.1
USB7+	B37	USB Port 7, data + or D+	1/0		USB 2.0 compliant. Backwards compatible to USB 1.1
USB7-	B36	USB Port 7, data - or D-	1/0		USB 2.0 compliant. Backwards compatible to USB 1.1
USB_0_1_OC#	B44	USB over-current sense, USB ports 0 and 1. A pull-up for this line shall be present on the module. An open drain driver from a USB current monitor on the carrier board may drive this line low.	I 3.3VSB	PU 10k 3.3VSB	Do not pull this line high on the carrier board.
USB_2_3_OC#	A44	USB over-current sense, USB ports 2 and 3. A pull-up for this line shall be present on the module. An open drain driver from a USB current monitor on the carrier board may drive this line low.	I 3.3VSB	3.3VSB	Do not pull this line high on the carrier board.
USB_4_5_OC#	B38	USB over-current sense, USB ports 4 and 5. A pull-up for this line shall be present on the module. An open drain driver from a USB current monitor on the carrier board may drive this line low.	I 3.3VSB	PU 10k 3.3VSB	Do not pull this line high on the carrier board.

Signal	Pin #	Description	I/O	PU/PD	Comment
USB_6_7_OC#	A38	USB over-current sense, USB ports 6 and 7. A pull-up for this line shall be	I 3.3VSB	PU 10k	Do not pull this line high on the carrier board.
		present on the module. An open drain driver from a USB current monitor		3.3VSB	-
		on the carrier board may drive this line low.			

Table 17 CRT Signal Descriptions

Signal	Pin #	Description	I/O	PU/PD	Comment
VGA_RED	B89	Red for monitor. Analog DAC output, designed to drive a 37.5-Ohm equivalent load.	O Analog	PD 150R	Optional
VGA_GRN	B91	Green for monitor. Analog DAC output, designed to drive a 37.5-Ohm equivalent load.	O Analog	PD 150R	Optional
VGA_BLU	B92	Blue for monitor. Analog DAC output, designed to drive a 37.5-Ohm equivalent load.	O Analog	PD 150R	Optional
VGA_HSYNC	B93	Horizontal sync output to VGA monitor	O 3.3V		Optional
VGA_VSYNC	B94	Vertical sync output to VGA monitor	O 3.3V		Optional
VGA_I2C_CK	B95	DDC clock line (I ² C port dedicated to identify VGA monitor capabilities)	I/O OD 5V	PU 1k2 3.3V	Optional
VGA_I2C_DAT	B96	DDC data line.	I/O OD 5V	PU 1k2 3.3V	Optional

To support the VGA interfac, you need a customized conga-TC175 variant.

Table 18 LVDS Signal Descriptions

Signal	Pin #	Description	I/O	PU/PD	Comment	
LVDS_A0+	A71	LVDS Channel A differential pairs	O LVDS			
LVDS_A0-	A72					
LVDS_A1+	A73					
LVDS_A1-	A74					
LVDS_A2+	A75					
LVDS_A2-	A76					
LVDS_A3+	A78					
LVDS_A3-	A79					
LVDS_A_CK+	A81	LVDS Channel A differential clock	O LVDS			
LVDS_A_CK-	A82					
LVDS_B0+	B71	LVDS Channel B differential pairs	O LVDS			
LVDS_B0-	B72					
LVDS_B1+	B73					
LVDS_B1-	B74					
LVDS_B2+	B75					
LVDS_B2-	B76					
LVDS_B3+	B77					
LVDS_B3-	B78					
LVDS_B_CK+	B81	LVDS Channel B differential clock	O LVDS			
LVDS_B_CK-	B82					

Signal	Pin #	Description	I/O	PU/PD	Comment
LVDS_VDD_EN	A77	LVDS panel power enable	O 3.3V	PD 10k	
LVDS_BKLT_EN	B79	LVDS panel backlight enable	O 3.3V	PD 10k	
LVDS_BKLT_CTRL	B83	LVDS panel backlight brightness control	O 3.3V		
LVDS_I2C_CK	A83	DDC lines used for flat panel detection and control.	O 3.3V	PU 2k2 3.3V for LVDS support (default)	
LVDS_I2C_DAT	A84	DDC lines used for flat panel detection and control.	I/O 3.3V	PU 2k2 3.3V for LVDS support (default)	

Table 19 Embedded DisplayPort Signal Descriptions

Signal	Pin #	Description	1/0	PU/PD	Comment
eDP_TX3+	A81	eDP differential pairs.	AC coupled off		
eDP_TX3-	A82		module.		
eDP_TX2+	A71				
eDP_TX2-	A72				
eDP_TX1+	A73				
eDP_TX1-	A74				
eDP_TX0+	A75				
eDP_TX0-	A76				
eDP_VDD_EN	A77	eDP power enable.	O 3.3V	PD 10k	
eDP_BKLT_EN	B79	eDP backlight enable.	O 3.3V	PD 10k	
eDP_BKLT_CTRL	B83	eDP backlight brightness control.	O 3.3V		
eDP_AUX+	A83	eDP AUX+.	AC coupled off		
			module.		
eDP_AUX-	A84	eDP AUX	AC coupled off		
			module.		
eDP_HPD	A87	Detection of Hot Plug / Unplug and notification of the link layer.	I 3.3V		

Table 20 SPI BIOS Flash Interface Signal Descriptions

Signal	Pin #	Description	I/O	PU/PD	Comment
SPI_CS#	B97	Chip select for Carrier Board SPI BIOS Flash.	O 3.3VSB		Carrier shall pull to SPI_POWER when
					external SPI is provided but not used.
SPI_MISO	A92	Data in to module from carrier board SPI BIOS flash.	I 3.3VSB		
SPI_MOSI	A95	Data out from module to carrier board SPI BIOS flash.	O 3.3VSB		
SPI_CLK	A94	Clock from module to carrier board SPI BIOS flash.	O 3.3VSB		
SPI_POWER	A91	Power source for carrier board SPI BIOS flash. SPI_POWER shall be used to power	+ 3.3VSB		
		SPI BIOS flash on the carrier only.			

Signal	Pin #	Description	I/O	PU/PD	Comment
BIOS_DIS0#	A34	Selection strap to determine the BIOS boot device.	I 3.3VSB	PU 10K	Carrier shall be left as no-connect.
				3.3VSB	
BIOS_DIS1#	B88	Selection strap to determine the BIOS boot device.	I 3.3VSB	PU 10K	Carrier shall be left as no-connect
				3.3VSB	

Table 21 Miscellaneous Signal Descriptions

Signal	Pin #	Description	I/O	PU/PD	Comment
I2C_CK	B33	General purpose I ² C port clock output/input	I/O 3.3V	PU 2K2 3.3VSB	
I2C_DAT	B34	General purpose I ² C port data I/O line	I/O 3.3V	PU 2K2 3.3VSB	
SPKR	B32	Output for audio enunciator, the "speaker" in PC-AT systems	O 3.3V		SPEAKER is a boot strap signal (see note below)
WDT	B27	Output indicating that a watchdog time-out event has occurred.	O 3.3V	PD 10K	
FAN_PWMOUT	B101	Fan speed control. Uses the Pulse Width Modulation (PWM) technique to control the fan's RPM.	O OD 3.3V		
FAN_TACHIN	B102	Fan tachometer input.	IOD	PU 10K 3.3V	Requires a fan with a two pulse output.
TPM_PP	A96	Physical Presence pin of Trusted Platform Module (TPM). Active high. TPM chip has an internal pull-down. This signal is used to indicate Physical Presence to the TPM.	I 3.3V		Trusted Platform Module chip is optional.

Table 22 General Purpose I/O Signal Descriptions

Signal	Pin #	Description	I/O	PU/PD	Comment
GPO0	A93	General purpose output pins. Shared with SD_CLK. Output from COM Express, input to SD	O 3.3V		
GPO1	B54	General purpose output pins. Shared with SD_CMD. Output from COM Express, input to SD	O 3.3V		
GPO2	B57	General purpose output pins. Shared with SD_WP. Output from COM Express, input to SD	O 3.3V		
GPO3	B63	General purpose output pins. Shared with SD_CD. Output from COM Express, input to SD	O 3.3V		
GPI0	A54	General purpose input pins. Pulled high internally on the module. Shared with SD_DATA0. Bidirectional signal	I 3.3V	PU 10K 3.3V	
GPI1	A63	General purpose input pins. Pulled high internally on the module. Shared with SD_DATA1. Bidirectional signal	I 3.3V	PU 10K 3.3V	
GPI2	A67	General purpose input pins. Pulled high internally on the module. Shared with SD_DATA2. Bidirectional signal	I 3.3V	PU 10K 3.3V	

Signal	Pin #	Description	I/O	PU/PD	Comment
GPI3		General purpose input pins. Pulled high internally on the module. Shared with SD_DATA3. Bidirectional signal.	I 3.3V	PU 10K 3.3V	

The conga-TC175 provides GPIO signals on the COM Express connector by default.

Table 23 Power and System Management Signal Descriptions

Signal	Pin #	Description	I/O	PU/PD	Comment
PWRBTN#	B12	Power button to bring system out of S5 (soft off), active on falling edge.	I 3.3VSB	PU 10k 3.3VSB	
SYS_RESET#	B49	Reset button input. Active low input. Edge triggered. System will not be held in hardware reset while this input is kept low.	I 3.3VSB	PU 10k 3.3VSB	
CB_RESET#	B50	Reset output from module to Carrier Board. Active low. Issued by module chipset and may result from a low SYS_RESET# input, a low PWR_OK input, a VCC_12V power input that falls below the minimum specification, a watchdog timeout, or may be initiated by the module software.	O 3.3V	PD 100k	
PWR_OK	B24	Power OK from main power supply. A high value indicates that the power is good.	I 3.3V		Set by resistor divider to accept 3.3V.
SUS_STAT#	B18	Indicates imminent suspend operation; used to notify LPC devices.	O 3.3VSB	PU 10k 3.3VSB	
SUS_S3#	A15	Indicates system is in Suspend to RAM state. Active-low output. An inverted copy of SUS_S3# on the carrier board (also known as "PS_ON") may be used to enable the non-standby power on a typical ATX power supply.	O 3.3VSB		
SUS_S4#	A18	Indicates system is in Suspend to Disk state. Active low output.	O 3.3VSB		Not supported
SUS_S5#	A24	Indicates system is in Soft Off state.	O 3.3VSB		
WAKE0#	B66	PCI Express wake up signal.	I 3.3VSB	PU 1k 3.3VSB	
WAKE1#	B67	General purpose wake up signal. May be used to implement wake-up on PS/2 keyboard or mouse activity.	I 3.3VSB	PU 10k 3.3VSB	
BATLOW#	A27	Battery low input. This signal may be driven low by external circuitry to signal that the system battery is low, or may be used to signal some other external power-management event.	I 3.3VSB	PU 10k 3.3VSB	
THRM#	B35	Input from off-module temp sensor indicating an over-temp situation.	I 3.3V	PU 10k 3.3V	
THERMTRIP#	A35	Active low output indicating that the CPU has entered thermal shutdown.	O 3.3V	PU 10k 3.3V	
SMB_CK	B13	System Management Bus bidirectional clock line.	I/O 3.3VSB	PU 2k2 3.3VSB	
SMB_DAT#	B14	System Management Bus bidirectional data line.	I/O OD 3.3VSB	PU 2k2 3.3VSB	
SMB_ALERT#	B15	System Management Bus Alert – active low input can be used to generate an SMI# (System Management Interrupt) or to wake the system.	I 3.3VSB	PU 2k2 3.3VSB	
LID#	A103	Lid button. Used by the ACPI operating system for a LID switch.	I OD 3.3V	PU 10k 3.3VSB	
SLEEP#	B103	Sleep button. Used by the ACPI operating system to bring the system to sleep state or to wake it up again.	I OD 3.3V	PU 10k 3.3VSB	

Table 24 General Purpose Serial Interface Signal Descriptions

Signal	Pin #	Description	I/O	PU/PD	Comment
SERO_TX	A98	General purpose serial port transmitter	O 3.3V		
SER1_TX	A101	General purpose serial port transmitter	O 3.3V		
SERO_RX	A99	General purpose serial port receiver	13.3V	PU 47k 3.3V	
SER1_RX	A102	General purpose serial port receiver	13.3V	PU 47k 3.3V	

Table 25 Power and GND Signal Descriptions

Signal	Pin #	Description	I/O	PU/PD	Comment
VCC_12V	A104-A109 B104-B109	Primary power input: +12V nominal. All available VCC_12V pins on the connector(s) shall be used.	Р		
VCC_5V_SBY	B84-B87	Standby power input: +5.0V nominal. If VCC5_SBY is used, all available VCC_5V_SBY pins on the connector(s) shall be used. Only used for standby and suspend functions. May be left unconnected if these functions are not used in the system design.	P		
VCC_RTC	A47	Real-time clock circuit-power input. Nominally +3.0V.	Р		
GND		Ground - DC power and signal and AC signal return path. All available GND connector pins shall be used and tied to Carrier Board GND plane.	P		

8.2 A-B Connector Pinout

Table 26 Connector A-B Pinout

Pin	Row A	Pin	Row B	Pin	Row A	Pin	Row B
A1	GND (FIXED)	B1	GND (FIXED)	A56	PCIE_TX4-	B56	PCIE_RX4-
A2	GBE0_MDI3-	B2	GBE0_ACT#	A57	GND	B57	GPO2
A3	GBE0_MDI3+	В3	LPC_FRAME#	A58	PCIE_TX3+	B58	PCIE_RX3+
A4	GBE0_LINK100#	B4	LPC_AD0	A59	PCIE_TX3-	B59	PCIE_RX3-
A5	GBE0_LINK1000#	B5	LPC_AD1	A60	GND (FIXED)	B60	GND (FIXED)
A6	GBE0_MDI2-	В6	LPC_AD2	A61	PCIE_TX2+	B61	PCIE_RX2+
A7	GBE0_MDI2+	B7	LPC_AD3	A62	PCIE_TX2-	B62	PCIE_RX2-
A8	GBE0_LINK#	B8	LPC_DRQ0#	A63	GPI1	B63	GPO3
A9	GBE0_MDI1-	В9	LPC_DRQ1#	A64	PCIE_TX1+	B64	PCIE_RX1+
A10	GBE0_MDI1+	B10	LPC_CLK	A65	PCIE_TX1-	B65	PCIE_RX1-
A11	GND (FIXED)	B11	GND (FIXED)	A66	GND	B66	WAKE0#
A12	GBE0_MDI0-	B12	PWRBTN#	A67	GPI2	B67	WAKE1#
A13	GBE0_MDI0+	B13	SMB_CK	A68	PCIE_TX0+	B68	PCIE_RX0+
A14	GBE0_CTREF (*)	B14	SMB_DAT	A69	PCIE_TX0-	B69	PCIE_RX0-
A15	SUS_S3#	B15	SMB_ALERT#	A70	GND (FIXED)	B70	GND (FIXED)
A16	SATA0_TX+	B16	SATA1_TX+	A71	eDP_TX2+/LVDS_A0+	B71	LVDS_B0+
A17	SATA0_TX-	B17	SATA1_TX-	A72	eDP_TX2-/LVDS_A0-	B72	LVDS_B0-
A18	SUS_S4#	B18	SUS_STAT#	A73	eDP_TX1+/LVDS_A1+	B73	LVDS_B1+
A19	SATA0_RX+	B19	SATA1_RX+	A74	eDP_TX1-/LVDS_A1-	B74	LVDS_B1-
A20	SATA0_RX-	B20	SATA1_RX-	A75	eDP_TX0+/LVDS_A2+	B75	LVDS_B2+
A21	GND (FIXED)	B21	GND (FIXED)	A76	eDP_TX0-/LVDS_A2-	B76	LVDS_B2-
A22	SATA2_TX+	B22	SATA3_TX+ (*)	A77	eDP/LVDS_VDD_EN	B77	LVDS_B3+
A23	SATA2_TX-	B23	SATA3_TX- (*)	A78	LVDS_A3+	B78	LVDS_B3-
A24	SUS_S5#	B24	PWR_OK	A79	LVDS_A3-	B79	eDP/LVDS_BKLT_EN
A25	SATA2_RX+	B25	SATA3_RX+ (*)	A80	GND (FIXED)	B80	GND (FIXED)
A26	SATA2_RX-	B26	SATA3_RX- (*)	A81	eDP_TX3+/LVDS_A_CK+	B81	LVDS_B_CK+
A27	BATLOW#	B27	WDT	A82	eDP_TX3-/LVDS_A_CK-	B82	LVDS_B_CK-
A28	(S)ATA_ACT#	B28	AC/HDA_SDIN2 (*)	A83	eDP_AUX+/LVDS_I2C_CK	B83	eDP/LVDS_BKLT_CTRL
A29	AC/HDA_SYNC	B29	AC/HDA_SDIN1	A84	eDP_AUX-/LVDS_I2C_DAT	B84	VCC_5V_SBY
A30	AC/HDA_RST#	B30	AC/HDA_SDIN0	A85	GPI3	B85	VCC_5V_SBY
A31	GND (FIXED)	B31	GND (FIXED)	A86	RSVD	B86	VCC_5V_SBY
A32	AC/HDA_BITCLK	B32	SPKR	A87	eDP_HPD	B87	VCC_5V_SBY
A33	AC/HDA_SDOUT	B33	I2C_CK	A88	PCIE0_CK_REF+	B88	BIOS_DIS1#
A34	BIOS_DISO#	B34	I2C_DAT	A89	PCIE0_CK_REF-	B89	VGA_RED
A35	THRMTRIP#	B35	THRM#	A90	GND (FIXED)	B90	GND (FIXED)
A36	USB6-	B36	USB7-	A91	SPI_POWER	B91	VGA_GRN (*)

Pin	Row A	Pin	Row B	Pin	Row A	Pin	Row B
A37	USB6+	B37	USB7+	A92	SPI_MISO	B92	VGA_BLU
A38	USB_6_7_OC#	B38	USB_4_5_OC#	A93	GPO0	B93	VGA_HSYNC
A39	USB4-	B39	USB5-	A94	SPI_CLK	B94	VGA_VSYNC
A40	USB4+	B40	USB5+	A95	SPI_MOSI	B95	VGA_I2C_CK
A41	GND (FIXED)	B41	GND (FIXED)	A96	TPM_PP	B96	VGA_I2C_DAT
A42	USB2-	B42	USB3-	A97	TYPE10# (*)	B97	SPI_CS#
A43	USB2+	B43	USB3+	A98	SER0_TX	B98	RSVD
A44	USB_2_3_OC#	B44	USB_0_1_OC#	A99	SERO_RX	B99	RSVD
A45	USB0-	B45	USB1-	A100	GND (FIXED)	B100	GND (FIXED)
A46	USB0+	B46	USB1+	A101	SER1_TX	B101	FAN_PWMOUT
A47	VCC_RTC	B47	EXCD1_PERST#	A102	SER1_RX	B102	FAN_TACHIN
A48	EXCD0_PERST#	B48	EXCD1_CPPE#	A103	LID#	B103	SLEEP#
A49	EXCD0_CPPE#	B49	SYS_RESET#	A104	VCC_12V	B104	VCC_12V
A50	LPC_SERIRQ	B50	CB_RESET#	A105	VCC_12V	B105	VCC_12V
A51	GND (FIXED)	B51	GND (FIXED)	A106	VCC_12V	B106	VCC_12V
A52	PCIE_TX5+	B52	PCIE_RX5+	A107	VCC_12V	B107	VCC_12V
A53	PCIE_TX5-	B53	PCIE_RX5-	A108	VCC_12V	B108	VCC_12V
A54	GPI0	B54	GPO1	A109	VCC_12V	B109	VCC_12V
A55	PCIE_TX4+	B55	PCIE_RX4+	A110	GND (FIXED)	B110	GND (FIXED)

The signals marked with asterisk symbol (*) are not connected on the conga TC175.

8.3 C-D Connector Signal Descriptions

Table 27 PCI Express Signal Descriptions (general purpose)

Signal	Pin #	Description	I/O	PU/PD	Comment
PCIE_RX6+	C19	PCI Express channel 6, Receive Input differential pair.	I PCIE		
PCIE_RX6-	C20				
PCIE_TX6+	D19	PCI Express channel 6, Transmit Output differential pair.	O PCIE		
PCIE_TX6-	D20				
PCIE_RX7+	C22	PCI Express channel 7, Receive Input differential pair.	I PCIE		
PCIE_RX7-	C23				
PCIE_TX7+	D22	PCI Express channel 7, Transmit Output differential pair.	O PCIE		
PCIE_TX7-	D23				

Table 28 USB 3.0 Signal Descriptions

Signal	Pin #	Description	I/O	PU/PD	Comment
USB_SSRX0+	C4	Additional receive signal differential pairs for the Superspeed USB data path	I		
USB_SSRX0-	C3		1		
USB_SSTX0+	D4	Additional transmit signal differential pairs for the Superspeed USB data path	0		
USB_SSTX0-	D3		0		
USB_SSRX1+	C7	Additional receive signal differential pairs for the Superspeed USB data path	I		
USB_SSRX1-	C6		1		
USB_SSTX1+	D7	Additional transmit signal differential pairs for the Superspeed USB data path	0		
USB_SSTX1-	D6		0		
USB_SSRX2+	C10	Additional receive signal differential pairs for the Superspeed USB data path	I		
USB_SSRX2-	C9		I		
USB_SSTX2+	D10	Additional transmit signal differential pairs for the Superspeed USB data path	0		
USB_SSTX2-	D9		0		
USB_SSRX3+	C13	Additional receive signal differential pairs for the Superspeed USB data path	I		
USB_SSRX3-	C12		I		
USB_SSTX3+	D13	Additional transmit signal differential pairs for the Superspeed USB data path	0		
USB_SSTX3-	D12		0		

Table 29 PCI Express Signal Descriptions (x16 Graphics)

Signal	Pin #	Description	I/O	PU/PD	Comment
PEG_RX0+	C52	PCI Express Graphics Receive Input differential pairs.	I PCIE		Optional x1 or x2 PEG port
PEG_RX0-	C53	Note: Can also be used as PCI Express Receive Input differential pairs 16 through 31 known			(requires re-routing of PCIe
PEG_RX1+	C55	as PCIE_RX[16-31] + and			lanes 5 and/or 6)
PEG_RX1-	C56				
PEG_RX2+	C58				
PEG_RX2-	C59				
PEG_RX3+	C61				
PEG_RX3-	C62				
PEG_RX4+	C65				
PEG_RX4-	C66				
PEG_RX5+	C68				
PEG_RX5-	C69				
PEG_RX6+	C71				
PEG_RX6-	C72				
PEG_RX7+	C74				
PEG_RX7-	C75				
PEG_RX8+	C78				
PEG_RX8-	C79				
PEG_RX9+	C81				
PEG_RX9-	C82				
PEG_RX10+	C85				
PEG_RX10-	C86				
PEG_RX11+	C88				
PEG_RX11-	C89				
PEG_RX12+	C91				
PEG_RX12-	C92				
PEG_RX13+	C94				
PEG_RX13-	C95				
PEG_RX14+	C98				
PEG_RX14-	C99				
PEG_RX15+	C101				
PEG_RX15-	C102				

Signal	Pin #	Description	I/O	PU/PD	Comment
PEG_TX0+	D52	PCI Express Graphics Transmit Output differential pairs.	O PCIE		Optional x1 or x2 PEG port
PEG_TX0-	D53	Note: Can also be used as PCI Express Transmit Output differential pairs 16 through 31			(requires re-routing of PCIe
PEG_TX1+	D55	known as PCIE_TX[16-31] + and			lanes 5 and/or 6)
PEG_TX1-	D56				
PEG_TX2+	D58				
PEG_TX2-	D59				
PEG_TX3+	D61				
PEG_TX3-	D62				
PEG_TX4+	D65				
PEG_TX4-	D66				
PEG_TX5+	D68				
PEG_TX5-	D69				
PEG_TX6+	D71				
PEG_TX6-	D72				
PEG_TX7+	D74				
PEG_TX7-	D75				
PEG_TX8+	D78				
PEG_TX8-	D79				
PEG_TX9+	D81				
PEG_TX9-	D82				
PEG_TX10+	D85				
PEG_TX10-	D86				
PEG_TX11+	D88				
PEG_TX11-	D89				
PEG_TX12+	D91				
PEG_TX12-	D92				
PEG_TX13+	D94				
PEG_TX13-	D95				
PEG_TX14+	D98				
PEG_TX14-	D99				
PEG_TX15+	D101				
PEG_TX15-	D102				
PEG_LANE_RV#	D54	PCI Express Graphics lane reversal input strap. Pull low on the carrier board to reverse lane	1	PU 10k 3.3V	Not supported.
		order.			, '

The conga-TC175 offers optional x1/x2 PEG port via PCIe lanes 5 or/and 6. The x1/x2 PEG port is not available by default. To support this feature, you need a customized conga-TC175 variant (assembly option).

Table 30 DDI Signal Description

Signal	Pin #	Description	I/O	PU/PD	Comment
DDI1_PAIR0+	D26	Multiplexed with DP1_LANE0+ and TMDS1_DATA2+.	O PCIE		
DDI1_PAIR0-	D27	Multiplexed with DP1_LANE0- and TMDS1_DATA2			
DDI1_PAIR1+	D29	Multiplexed with DP1_LANE1+ and TMDS1_DATA1+.	O PCIE		
DDI1_PAIR1-	D30	Multiplexed with DP1_LANE1- and TMDS1_DATA1			
DDI1_PAIR2+	D32	Multiplexed with DP1_LANE2+ and TMDS1_DATA0+.	O PCIE		
DDI1_PAIR2-	D33	Multiplexed with DP1_LANE2- and TMDS1_DATA0			
DDI1_PAIR3+	D36	Multiplexed with DP1_LANE3+ and TMDS1_CLK+.	O PCIE		
DDI1_PAIR3-	D37	Multiplexed with DP1_LANE3- and TMDS1_CLK			
DDI1_PAIR4+	C25	Multiplexed with SDVO1_INT+.			Not supported
DDI1_PAIR4-	C26	Multiplexed with SDVO1_INT			
DDI1_PAIR5+	C29	Multiplexed with SDVO1_TVCLKIN+.			Not supported
DDI1_PAIR5-	C30	Multiplexed with SDVO1_TVCLKIN			
DDI1_PAIR6+	C15	Multiplexed with SDVO1_FLDSTALL+.			Not supported
DDI1_PAIR6-	C16	Multiplexed with SDVO1_FLDSTALL			
DDI1_HPD	C24	Multiplexed with DP1_HPD and HDMI1_HPD.	I 3.3V	PD 1M	
DDI1_CTRLCLK_AUX+	D15	Multiplexed with DP1_AUX+ and HMDI1_CTRLCLK.		PD100k	
		DP AUX+ function if DDI1_DDC_AUX_SEL is no connect.	I/O PCIE		
		HDMI/DVI I2C CTRLCLK if DDI1_DDC_AUX_SEL is pulled high	I/O OD 3.3V		
DDI1_CTRLDATA_AUX-	D16	Multiplexed with DP1_AUX- and HDMI1_CTRLDATA.		PU 100k	DDI1_CTRLDATA_AUX- is a boot strap
		DP AUX- function if DDI1_DDC_AUX_SEL is no connect.	I/O PCIE	3.3V	signal (see note below).
		HDMI/DVI I2C CTRLDATA if DDI1_DDC_AUX_SEL is pulled high	I/O OD 3.3V		DDI enable strap already populated.
DDI1_DDC_AUX_SEL	D34	Selects the function of DDI1_CTRLCLK_AUX+ and DDI1_CTRLDATA_AUX	I 3.3V	PD 1M	
		This pin shall have a IM pull-down to logic ground on the module. If this input			
		is floating, the AUX pair is used for the DP AUX+/- signals. If pulled-high, the			
		AUX pair contains the CTRLCLK and CTRLDATA signals.			
DDI2_PAIR0+	D39	Multiplexed with DP2_LANE0+ and TMDS2_DATA2+.	O PCIE		
DDI2_PAIR0-	D40	Multiplexed with DP2_LANE0- and TMDS2_DATA2			
DDI2_PAIR1+	D42	Multiplexed with DP2_LANE1+ and TMDS2_DATA1+.	O PCIE		
DDI2_PAIR1-	D43	Multiplexed with DP2_LANE1- and TMDS2_DATA1			
DDI2_PAIR2+	D46	Multiplexed with DP2_LANE2+ and TMDS2_DATA0+.	O PCIE		
DDI2_PAIR2-	D47	Multiplexed with DP2_LANE2- and TMDS2_DATA0			
DDI2_PAIR3+	D49	Multiplexed with DP2_LANE3+ and TMDS2_CLK+.	O PCIE		
DDI2_PAIR3-	D50	Multiplexed with DP2_LANE3- and TMDS2_CLK			
DDI2_HPD	D44	Multiplexed with DP2_HPD and HDMI2_HPD.	I 3.3V	PD 1M	
DDI2_CTRLCLK_AUX+	C32	Multiplexed with DP2_AUX+ and HDMI2_CTRLCLK.		PD 100k	
		DP AUX+ function if DDI2_DDC_AUX_SEL is no connect.	I/O PCIE		
		HDMI/DVI I2C CTRLCLK if DDI2_DDC_AUX_SEL is pulled high	I/O OD 3.3V		
DDI2_CTRLDATA_AUX-	C33	Multiplexed with DP2_AUX- and HDMI2_CTRLDATA.		PU 100k	DDI2_CTRLCLK_AUX- is a boot strap
		DP AUX- function if DDI2_DDC_AUX_SEL is no connect.	I/O PCIE	3.3V	signal (see note below).
		HDMI/DVI I2C CTRLDATA if DDI2_DDC_AUX_SEL is pulled high.	I/O OD 3.3V		DDI enable strap already populated.

Signal	Pin #	Description	I/O	PU/PD	Comment
DDI2_DDC_AUX_SEL	C34	Selects the function of DDI2_CTRLCLK_AUX+ and DDI2_CTRLDATA_AUX This pin shall have a IM pull-down to logic ground on the module. If this input is floating, the AUX pair is used for the DP AUX+/- signals. If pulled-high, the AUX pair contains the CTRLCLK and CTRLDATA signals	I 3.3V		
DDI3_PAIR0+ DDI3_PAIR0-	C39 C40	Multiplexed with DP3_LANE0+ and TMDS3_DATA2+. Multiplexed with DP3_LANE0- and TMDS3_DATA2	O PCIE		Not supported
DDI3_PAIR1+ DDI3_PAIR1-	C42 C43	Multiplexed with DP3_LANE1+ and TMDS3_DATA1+. Multiplexed with DP3_LANE1- and TMDS3_DATA1	O PCIE		Not supported
DDI3_PAIR2+ DDI3_PAIR2-	C46 C47	Multiplexed with DP3_LANE2+ and TMDS3_DATA0+. Multiplexed with DP3_LANE2- and TMDS3_DATA0	O PCIE		Not supported
DDI3_PAIR3+ DDI3_PAIR3-	C49 C50	Multiplexed with DP3_LANE3+ and TMDS3_CLK+. Multiplexed with DP3_LANE3- and TMDS3_CLK	O PCIE		Not supported
DDI3_HPD	C44	Multiplexed with DP3_HPD and HDMI3_HPD.	I 3.3V		Not supported
DDI3_CTRLCLK_AUX+	C36	Multiplexed with DP3_AUX+ and HDMI3_CTRLCLK. DP AUX+ function if DDI3_DDC_AUX_SEL is no connect. HDMI/DVI I2C CTRLCLK if DDI3_DDC_AUX_SEL is pulled high	I/O PCIE I/O OD 3.3V		Not supported
DDI3_CTRLDATA_AUX-	C37	Multiplexed with DP3_AUX- and HDMI3_CTRLDATA. DP AUX- function if DDI3_DDC_AUX_SEL is no connect. HDMI/DVI I2C CTRLDATA if DDI3_DDC_AUX_SEL is pulled high.	I/O PCIE I/O OD 3.3V		Not supported
DDI3_DDC_AUX_SEL	C38	Selects the function of DDI3_CTRLCLK_AUX+ and DDI3_CTRLDATA_AUX This pin shall have a IM pull-down to logic ground on the module. If this input is floating, the AUX pair is used for the DP AUX+/- signals. If pulled-high, the AUX pair contains the CTRLCLK and CTRLDATA signals	I 3.3V		Not supported

The Digital Display Interface (DDI) signals are multiplexed with HDMI and DisplayPort (DP). The signals for these interfaces are routed to the DDI interface of the COM Express connector. Refer to the HDMI and DisplayPort signal description tables in this section for information about the signals routed to the DDI interface of the COM Express connector.

Table 31 HDMI Signal Descriptions

Signal	Pin #	Description	I/O	PU/PD	Comment
TMDS1_CLK +	D36	HDMI/DVI TMDS Clock output differential pair.	O PCIE		
TMDS1_CLK -	D37	Multiplexed with DDI1_PAIR3+ and DDI1_PAIR3			
TMDS1_DATA0+	D32	HDMI/DVI TMDS differential pair.	O PCIE		
TMDS1_DATA0-	D33	Multiplexed with DDI1_PAIR2+ and DDI1_PAIR2			
TMDS1_DATA1+	D29	HDMI/DVI TMDS differential pair.	O PCIE		
TMDS1_DATA1-	D30	Multiplexed with DDI1_PAIR1+ and DDI1_PAIR1			
TMDS1_DATA2+	D26	HDMI/DVI TMDS differential pair.	O PCIE		
TMDS1_DATA2-	D27	Multiplexed with DDI1_PAIR0+ and DDI1_PAIR0			
HDMI1_HPD	C24	HDMI/DVI Hot-plug detect.	I PCIE	PD 1M	
		Multiplexed with DDI1_HPD.			
HDMI1_CTRLCLK	D15	HDMI/DVI I ² C Control Clock	I/O OD 3.3V	PD 100k	
		Multiplexed with DDI1_CTRLCLK_AUX+			
HDMI1_CTRLDATA	D16	HDMI/DVI I ² C Control Data	I/O OD 3.3V	PU 100k	HDMI1_CTRLDATA is a boot strap signal (see note below).
		Multiplexed with DDI1_CTRLDATA_AUX-		3.3V	HDMI enable strap already populated
TMDS2_CLK +	D49	HDMI/DVI TMDS Clock output differential pair	O PCIE		
TMDS2_CLK -	D50	Multiplexed with DDI2_PAIR3+ and DDI2_PAIR3			
TMDS2_DATA0+	D46	HDMI/DVI TMDS differential pair.	O PCIE		
TMDS2_DATA0-	D47	Multiplexed with DDI2_PAIR2+ and DDI2_PAIR2			
TMDS2_DATA1+	D42	HDMI/DVI TMDS differential pair.	O PCIE		
TMDS2_DATA1-	D43	Multiplexed with DDI2_PAIR1+ and DDI2_PAIR1			
TMDS2_DATA2+	D39	HDMI/DVI TMDS differential pair.	O PCIE		
TMDS2_DATA2-	D40	Multiplexed with DDI2_PAIRO+ and DDI2_PAIRO			
HDMI2_HPD	D44	HDMI/DVI Hot-plug detect.	I PCIE	PD 1M	
		Multiplexed with DDI2_HPD			
HDMI2_CTRLCLK	C32	HDMI/DVI I ² C Control Clock	I/O OD 3.3V	PD 100k	
		Multiplexed with DDI2_CTRLCLK_AUX+			
HDM12_CTRLDATA	C33	HDMI/DVI I ² C Control Data	I/O OD 3.3V	PU 100k	HDMI2_CTRLDATA is a boot strap signal (see note below).
		Multiplexed with DDI2_CTRLDATA_AUX-		3.3V	HDMI enable strap is already populated.
TMDS3_CLK +	C49	HDMI/DVI TMDS Clock output differential pair	O PCIE		Not supported
TMDS3_CLK -	C50	Multiplexed with DDI3_PAIR3+ and DDI3_PAIR3			
TMDS3_DATA0+	C46	HDMI/DVI TMDS differential pair.	O PCIE		Not supported
TMDS3_DATA0-	C47	Multiplexed with DDI3_PAIR2+ and DDI3_PAIR2			
TMDS3_DATA1+	C42	HDMI/DVI TMDS differential pair.	O PCIE		Not supported
TMDS3_DATA1-	C43	Multiplexed with DDI3_PAIR1+ and DDI3_PAIR1			
TMDS3_DATA2+	C39	HDMI/DVI TMDS differential pair.	O PCIE		Not supported
TMDS3_DATA2-	C40	Multiplexed with DDI3_PAIRO+ and DDI3_PAIRO			
HDMI3_HPD	C44	HDMI/DVI Hot-plug detect.	I PCIE		Not supported
_		Multiplexed with DDI3_HPD.			
HDMI3_CTRLCLK	C36	HDMI/DVI I ² C Control Clock	I/O OD 3.3V		Not supported
		Multiplexed with DDI3_CTRLCLK_AUX+			

Signal	Pin #	Description	I/O	PU/PD	Comment
HDMI3_CTRLDATA	1	HDMI/DVI I ² C Control Data Multiplexed with DDI3_CTRLDATA_AUX-	I/O OD 3.3V		Not supported

Table 32 DisplayPort (DP) Signal Descriptions

Signal	Pin #	Description	I/O	PU/PD	Comment
DP1_LANE3+ DP1_LANE3-	D36 D37	Uni-directional main link for the transport of isochronous streams and secondary data. Multiplexed with DDI1_PAIR3+ and DDI1_PAIR3	O PCIE		
DP1_LANE2+ DP1_LANE2-	D32 D33	Uni-directional main link for the transport of isochronous streams and secondary data. Multiplexed with DDI1_PAIR2+ and DDI1_PAIR2	O PCIE		
DP1_LANE1+ DP1_LANE1-	D29 D30	Uni-directional main link for the transport of isochronous streams and secondary data. Multiplexed with DDI1_PAIR1+ and DDI1_PAIR1	O PCIE		
DP1_LANE0+ DP1_LANE0-	D26 D27	Uni-directional main link for the transport of isochronous streams and secondary data. Multiplexed with DDI1_PAIR0+ and DDI1_PAIR0	O PCIE		
DP1_HPD	C24	Detection of Hot Plug / Unplug and notification of the link layer. Multiplexed with DDI1_HPD.	I 3.3V	PD 1M	
DP1_AUX+	D15	Half-duplex bi-directional AUX channel for services such as link configuration or maintenance and EDID access.	I/O PCIE	PD 100k	
DP1_AUX-	D16	Half-duplex bi-directional AUX channel for services such as link configuration or maintenance and EDID access.	I/O PCIE	PU 100k 3.3V	DP1_AUX- is a boot strap signal (see note below). DP enable strap is already populated.
DP2_LANE3+ DP2_LANE3-	D49 D50	Uni-directional main link for the transport of isochronous streams and secondary data. Multiplexed with DDI2_PAIR3+ and DDI2_PAIR3-	O PCIE		
DP2_LANE2+ DP2_LANE2-	D46 D47	Uni-directional main link for the transport of isochronous streams and secondary data. Multiplexed with DDI2_PAIR2+ and DDI2_PAIR2-	O PCIE		
DP2_LANE1+ DP2_LANE1-	D42 D43	Uni-directional main link for the transport of isochronous streams and secondary data. Multiplexed with DDI2_PAIR1+ and DDI2_PAIR1-	O PCIE		
DP2_LANE0+ DP2_LANE0-	D39 D40	Uni-directional main link for the transport of isochronous streams and secondary data. Multiplexed with DDI2_PAIR0+ and DDI1_PAIR0-	O PCIE		

Signal Pin #		Description	I/O	PU/PD	Comment		
DP2_HPD	D44	Detection of Hot Plug / Unplug and notification of the link layer. Multiplexed with DDI2_HPD.	I 3.3V	PD 1M			
		Half-duplex bi-directional AUX channel for services such as link configuration or maintenance and EDID access.		PD 100k			
DP2_AUX-	C33	Half-duplex bi-directional AUX channel for services such as link configuration or maintenance and EDID access.	I/O PCIE	PU 100k 3.3V	DP2_AUX- is a boot strap signal (see note below). DP enable strap already populated.		
DP3_LANE3+ DP3_LANE3-	C49 C50	Uni-directional main link for the transport of isochronous streams and secondary data. Multiplexed with DDI3_PAIR3+ and DDI3_PAIR3	O PCIE		Not supported		
DP3_LANE2+ DP3_LANE2-	C46 C47	Uni-directional main link for the transport of isochronous streams and secondary data. Multiplexed with DDI3_PAIR2+ and DDI3_PAIR2	O PCIE		Not supported		
DP3_LANE1+ DP3_LANE1-	C42 C43	Uni-directional main link for the transport of isochronous streams and secondary data. Multiplexed with DDI3_PAIR1+ and DDI3_PAIR1	O PCIE		Not supported		
DP3_LANE0+ DP3_LANE0-	C39 C40	Uni-directional main link for the transport of isochronous streams and secondary data. Multiplexed with DDI3_PAIR0+ and DDI3_PAIR0	O PCIE		Not supported		
DP3_HPD	C44	Detection of Hot Plug / Unplug and notification of the link layer. Multiplexed with DDI3_HPD.	I 3.3V		Not supported		
DP3_AUX+	C36	Half-duplex bi-directional AUX channel for services such as link configuration or maintenance and EDID access.	I/O PCIE		Not supported		
DP3_AUX-	C37	Half-duplex bi-directional AUX channel for services such as link configuration or maintenance and EDID access.	I/O PCIE		Not supported		

Table 33 Module Type Definition Signal Description

Signal	Pin #	Description	I/O	Comment			
TYPE0# TYPE1#	C54 C57	The TYPE pins indi	PDS	TYPE[0:2]# signals are available on all modules			
TYPE2#	D57	TYPE2#	TYPE1#	TYPE0#			following the Type 2-6
		(e.g deactivates the		ower supply) if an incompati	Pinout Type 1 Pinout Type 2 Pinout Type 3 (no IDE) Pinout Type 4 (no PCI) Pinout Type 5 (no IDE, no PCI) Pinout Type 6 (no IDE, no PCI) Podule TYPE pins and keeps power off ble module pin-out type is detected. The	-	Pinout standard. The conga-TC175 is based on the COM Express Type 6 pinout therefore the pins 0 and 1 are not connected and pin 2 is connected to GND.
TYPE10#	A97	Dual use pin. Indic module is installed TYPE10#					
		is defined as a no-	connect for Types 1-6. A carrie	Pinout R1.0) modules this pin will conne er can detect a R1.0 module k	ct to other VCC_12V pins. In R2.0 this pin by the presence of 12V on this pin. R2.0 to ground through a 4.7k resistor.	_	

Table 34 Power and GND Signal Descriptions

Signal	Pin #	Description	I/O	PU/PD	Comment
VCC_12V	C104-C109	Primary power input: +12V nominal. All available VCC_12V pins on the connector(s) shall be	Р		
	D104-D109	used.			
GND	C1, C2, C5, C8, C11,	Ground - DC power and signal and AC signal return path.	Р		
	C14, C21, C31, C41, C51,	All available GND connector pins shall be used and tied to carrier board GND plane.			
	C60, C70,C73, C76, C80,				
	C84, C87, C90, C93, C96,				
	C100, C103, C110, D1,				
	D2, D5, D8, D11, D14,				
	D21, D31, D41, D51,				
	D60, D67, D70, D73,				
	D76, D80, D84, D87,				
	D90, D93, D96, D100,				
	D103, D110				

8.4 C-D Connector Pinout

Table 35 Connector C-D Pinout

Pin	Row C	Pin	Row D	Pin	Row C	Pin	Row D
C1	GND (FIXED)	D1	GND (FIXED)	C56	PEG_RX1- (*)	D56	PEG_TX1- (*)
C2	GND	D2	GND	C57	TYPE1#	D57	TYPE2#
C3	USB_SSRX0-	D3	USB_SSTX0-	C58	PEG_RX2+ (*)	D58	PEG_TX2+ (*)
C4	USB_SSRX0+	D4	USB_SSTX0+	C59	PEG_RX2- (*)	D59	PEG_TX2- (*)
C5	GND	D5	GND	C60	GND (FIXED)	D60	GND (FIXED)
C6	USB_SSRX1-	D6	USB_SSTX1-	C61	PEG_RX3+ (*)	D61	PEG_TX3+ (*)
C7	USB_SSRX1+	D7	USB_SSTX1+	C62	PEG_RX3- (*)	D62	PEG_TX3- (*)
C8	GND	D8	GND	C63	RSVD	D63	RSVD
C9	USB_SSRX2- (*)	D9	USB_SSTX2- (*)	C64	RSVD	D64	RSVD
C10	USB_SSRX2+ (*)	D10	USB_SSTX2+ (*)	C65	PEG_RX4+ (*)	D65	PEG_TX4+ (*)
C11	GND (FIXED)	D11	GND (FIXED)	C66	PEG_RX4- (*)	D66	PEG_TX4- (*)
C12	USB_SSRX3- (*)	D12	USB_SSTX3- (*)	C67	RSVD	D67	GND
C13	USB_SSRX3+ (*)	D13	USB_SSTX3+ (*)	C68	PEG_RX5+ (*)	D68	PEG_TX5+ (*)
C14	GND	D14	GND	C69	PEG_RX5- (*)	D69	PEG_TX5- (*)
C15	DDI1_PAIR6+ (*)	D15	DDI1_CTRLCLK_AUX+	C70	GND (FIXED)	D70	GND (FIXED)
C16	DDI1_PAIR6- (*)	D16	DDI1_CTRLDATA_AUX-	C71	PEG_RX6+ (*)	D71	PEG_TX6+ (*)
C17	RSVD	D17	RSVD	C72	PEG_RX6- (*)	D72	PEG_TX6- (*)
C18	RSVD	D18	RSVD	C73	GND	D73	GND
C19	PCIE_RX6+ (*)	D19	PCIE_TX6+ (*)	C74	PEG_RX7+ (*)	D74	PEG_TX7+ (*)
C20	PCIE_RX6- (*)	D20	PCIE_TX6- (*)	C75	PEG_RX7- (*)	D75	PEG_TX7- (*)
C21	GND (FIXED)	D21	GND (FIXED)	C76	GND	D76	GND
C22	PCIE_RX7+ (*)	D22	PCIE_TX7+ (*)	C77	RSVD	D77	RSVD
C23	PCIE_RX7- (*)	D23	PCIE_TX7- (*)	C78	PEG_RX8+ (*)	D78	PEG_TX8+ (*)
C24	DDI1_HPD	D24	RSVD	C79	PEG_RX8- (*)	D79	PEG_TX8- (*)
C25	DDI1_PAIR4+ (*)	D25	RSVD	C80	GND (FIXED)	D80	GND (FIXED)
C26	DDI1_PAIR4- (*)	D26	DDI1_PAIR0+	C81	PEG_RX9+ (*)	D81	PEG_TX9+ (*)
C27	RSVD	D27	DDI1_PAIR0-	C82	PEG_RX9- (*)	D82	PEG_TX9- (*)
C28	RSVD	D28	RSVD	C83	RSVD	D83	RSVD
C29	DDI1_PAIR5+ (*)	D29	DDI1_PAIR1+	C84	GND	D84	GND
C30	DDI1_PAIR5- (*)	D30	DDI1_PAIR1-	C85	PEG_RX10+ (*)	D85	PEG_TX10+ (*)
C31	GND (FIXED)	D31	GND (FIXED)	C86	PEG_RX10- (*)	D86	PEG_TX10- (*)
C32	DDI2_CTRLCLK_AUX+	D32	DDI1_PAIR2+	C87	GND	D87	GND
C33	DDI2_CTRLDATA_AUX-	D33	DDI1_PAIR2-	C88	PEG_RX11+ (*)	D88	PEG_TX11+ (*)
C34	DDI2_DDC_AUX_SEL	D34	DDI1_DDC_AUX_SEL	C89	PEG_RX11- (*)	D89	PEG_TX11- (*)
C35	RSVD	D35	RSVD	C90	GND (FIXED)	D90	GND (FIXED)
C36	DDI3_CTRLCLK_AUX+ (*)	D36	DDI1_PAIR3+	C91	PEG_RX12+ (*)	D91	PEG_TX12+ (*)

Pin	Row C	Pin	Row D	Pin	Row C	Pin	Row D
C37	DDI3_CTRLDATA_AUX- (*)	D37	DDI1_PAIR3-	C92	PEG_RX12- (*)	D92	PEG_TX12- (*)
C38	DDI3_DDC_AUX_SEL (*)	D38	RSVD	C93	GND	D93	GND
C39	DDI3_PAIR0+ (*)	D39	DDI2_PAIR0+	C94	PEG_RX13+ (*)	D94	PEG_TX13+ (*)
C40	DDI3_PAIRO- (*)	D40	DDI2_PAIR0-	C95	PEG_RX13- (*)	D95	PEG_TX13- (*)
C41	GND (FIXED)	D41	GND (FIXED)	C96	GND	D96	GND
C42	DDI3_PAIR1+ (*)	D42	DDI2_PAIR1+	C97	RVSD	D97	RSVD
C43	DDI3_PAIR1- (*)	D43	DDI2_PAIR1-	C98	PEG_RX14+ (*)	D98	PEG_TX14+ (*)
C44	DDI3_HPD	D44	DDI2_HPD	C99	PEG_RX14- (*)	D99	PEG_TX14- (*)
C45	RSVD	D45	RSVD	C100	GND (FIXED)	D100	GND (FIXED)
C46	DDI3_PAIR2+ (*)	D46	DDI2_PAIR2+	C101	PEG_RX15+ (*)	D101	PEG_TX15+ (*)
C47	DDI3_PAIR2- (*)	D47	DDI2_PAIR2-	C102	PEG_RX15- (*)	D102	PEG_TX15- (*)
C48	RSVD	D48	RSVD	C103	GND	D103	GND
C49	DDI3_PAIR3+ (*)	D49	DDI2_PAIR3+	C104	VCC_12V	D104	VCC_12V
C50	DDI3_PAIR3- (*)	D50	DDI2_PAIR3-	C105	VCC_12V	D105	VCC_12V
C51	GND (FIXED)	D51	GND (FIXED)	C106	VCC_12V	D106	VCC_12V
C52	PEG_RX0+ (*)	D52	PEG_TX0+ (*)	C107	VCC_12V	D107	VCC_12V
C53	PEG_RX0- (*)	D53	PEG_TX0- (*)	C108	VCC_12V	D108	VCC_12V
C54	TYPE0#	D54	PEG_LANE_RV# (*)	C109	VCC_12V	D109	VCC_12V
C55	PEG_RX1+ (*)	D55	PEG_TX1+ (*)	C110	GND (FIXED)	D110	GND (FIXED)

The signals marked with an asterisk symbol (*) are not supported on the conga-TC175.

8.5 Boot Strap Signals

Table 36 Boot Strap Signal Descriptions

Signal	Pin #	Description of Boot Strap Signal	1/0	PU/PD	Comment
AC/HDA_SDOUT	A33	High Definition Audio Serial Data Out: This signal is the serial TDM data	O 3.3VSB	PU 1K	AC/HDA_SDOUT is a boot strap
		output to the codec(s). This serial output is double-pumped for a bit rate of 48		3.3VSB	signal (see caution statement below)
		Mbps for High Definition Audio.			
SPKR	B32	Output for audio enunciator, the "speaker" in PC-AT systems	O 3.3V		SPKR is a boot strap signal (see
					caution statement below)
DDI1_CTRLDATA_AUX-	D16	Multiplexed with DP1_AUX- and HDMI1_CTRLDATA.		PU100k	DDI1_CTRLDATA_AUX- is a boot
DP1_AUX-		DP AUX- function if DDI1_DDC_AUX_SEL is no connect.	I/O PCIE	3.3V	strap signal (see not below).
HDMI_CTRLDATA		HDMI/DVI I2C CTRLDATA if DDI1_DDC_AUX_SEL is pulled high.	I/O OD 3.3V		
DDI2_CTRLDATA_AUX-	C33	Multiplexed with DP2_AUX- and HDMI2_CTRLDATA.		PU100k	DDI2_CTRLDATA_AUX- is a boot
DP2_AUX-		DP AUX- function if DDI2_DDC_AUX_SEL is no connect.	I/O PCIE	3.3V	strap signal (see not below).
HDM2_CTRLDATA		HDMI/DVI I2C CTRLDATA if DDI2_DDC_AUX_SEL is pulled high.	I/O OD 3.3V		

Caution

The signals listed in the table above are used as chipset configuration straps during system reset. In this condition (during reset), they are inputs that are pulled to the correct state by either COM ExpressTM internally implemented resistors or chipset internally implemented resistors that are located on the module. No external DC loads or external pull-up or pull-down resistors should change the configuration of the signals listed in the above table.

External resistors may override the internal strap states and cause the COM Express™ module to malfunction and/or cause irreparable damage to the module.

9 System Resources

9.1 I/O Address Assignment

The I/O address assignment of the conga-TC175 module is functionally identical with a standard PC/AT.

The BIOS assigns PCI and PCI Express I/O resources from FFF0h downwards. Non PnP/PCI/PCI Express compliant devices must not consume I/O resources in that area.

9.1.1 LPC Bus

On the conga-TC175, the PCI Express Bus acts as the subtractive decoding agent. All I/O cycles that are not positively decoded are forwarded to the PCI Bus not the LPC Bus. Only specified I/O ranges are forwarded to the LPC Bus. In the congatec Embedded BIOS the following I/O address ranges are sent to the LPC Bus:

2Eh – 2Fh 4Eh – 4Fh 60h, 64h A00h – A1Fh E00h - EFFh (always used internally)

Parts of these ranges are not available if a Super I/O is used on the carrier board. If a Super I/O is not implemented on the carrier board then these ranges are available for customer use. If you require additional LPC Bus resources other than those mentioned above, or more information about this subject, contact congatec technical support for assistance.

9.2 PCI Configuration Space Map

Table 31 PCI Configuration Space Map

Bus Number (hex)	Device Number (hex)	Function Number (hex)	Description	
00h	00h	00h	HOST and DRAM Controller	
00h	02h	00h	Integrated Graphics Device	
00h	08h	00h	Gaussian Mixture Model Device	
00h	14h	00h	USB 3.0 xHCl Controller	
00h	14h	02h	Thermal Subsystem	
00h (Note1)	16h	00h	Management Engine (ME) Interface 1	
00h (Note1)	16h	01h	Intel ME Interface 2	
00h (Note1)	16h	02h	ME IDE Redirection (IDE-R) Interface	
00h (Note1)	16h	03h	ME Keyboard and Text (KT) Redirection	
00h (Note1)	16h	04h	Intel ME Interface 3	
00h	17h	00h	SATA Controller	
00h (Note2)	1Ch	00h	PCI Express Root Port 0	
00h (Note2)	1Ch	01h	PCI Express Root Port 1	
00h (Note2)	1Ch	02h	PCI Express Root Port 2	
00h (Note2)	1Ch	03h	PCI Express Root Port 3	
00h (Note2)	1Ch	04h	PCI Express Root Port 4	
00h (Note2)	1Ch	05h	PCI Express Root Port 5	
00h (Note2)	1Dh	00h	PCI Express Root Port 6	
00h (Note2)	1Dh	02h	PCI Express Root Port 7	
00h	1Fh	00h	PCI to LPC Bridge	
00h	1Fh	02h	Power Management Controller	
00h	1Fh	03h	Intel® High Definition Audio (Intel® HD Audio)	
00h	1Fh	04h	SMBus Controller	
00h	1Fh	06h	GbE Controller	
01h (Note3)	00h	00h	PCI Express Port 0	
02h (Note3)	00h	00h	PCI Express Port 1	
03h (Note3)	00h	00h	PCI Express Port 2	
04h (Note3)	00h	00h	PCI Express Port 3	
05h (Note3)	00h	00h	PCI Express Port 4	
06h (Note3)	00h	00h	PCI Express Port 5	

Bus Number (hex)	Device Number (hex)	Function Number (hex)	Description
07h (Note3)	00h	00h	PCI Express Port 6
08h (Note3)	00h	00h	PCI Express Port 7

- 1. In the standard configuration, the Intel Management Engine (ME) related devices are partly present or not present at all.
- 2. The PCI Express ports are visible only if a device is attached to the PCI Express slot on the carrier board.
- 3. The table represents a case when a single functional PCI/PCIe device is connected to all possible slots on the carrier board. The given bus numbers will change based on actual hardware configuration.
- 4. Internal PCI devices not connected to the conga-TC175 are not listed.

9.3 I²C

Onboard resources are not connected to the I²C bus. Address 16h is reserved for congatec Battery Management solutions.

9.4 SM Bus

System Management (SM) bus signals are connected to the Intel® Chipset. The SM bus is not intended to be used by off-board non-system management devices. For more information about this subject contact congatec technical support.

10 BIOS Setup Description

TBD

11 Additional BIOS Features

TBD

12 Industry Specifications

Table 37 References

Specification	Link
Low Pin Count Interface Specification, Revision 1.0 (LPC)	http://developer.intel.com/design/chipsets/industry/lpc.htm
Universal Serial Bus (USB) Specification, Revision 2.0	http://www.usb.org/home
PCI Specification, Revision 2.3	http://www.pcisig.com/specifications
Serial ATA Specification, Revision 3.0	http://www.serialata.org
PICMG® COM Express Module™ Base Specification	http://www.picmg.org/
PCI Express Base Specification, Revision 2.0	http://www.pcisig.com/specifications

